A comparative assessment of causal machine learning and traditional methods for enhancing supply chain resiliency and efficiency in the automotive industry

Ishansh Gupta, Adriana Martinez, Sergio Correa, Hendro Wicaksono
{"title":"A comparative assessment of causal machine learning and traditional methods for enhancing supply chain resiliency and efficiency in the automotive industry","authors":"Ishansh Gupta,&nbsp;Adriana Martinez,&nbsp;Sergio Correa,&nbsp;Hendro Wicaksono","doi":"10.1016/j.sca.2025.100116","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient supplier escalation is crucial for maintaining smooth operational supply chains in the automotive industry, as disruptions can lead to significant production delays and financial losses. Many companies still rely on traditional escalation methods, which may lack the precision and adaptability offered by modern technologies. This study presents a comparative analysis of decision-making strategies for supplier escalation, evaluating causal machine learning (CML), traditional machine learning (ML), and current escalation practices in a leading German automotive company. The study employs an explanatory sequential mixed method, integrating the Analytical Hierarchy Process (AHP) with in-depth interviews with 25 industry experts. These methods are assessed based on several performance metrics: accuracy, business impact, explanation capability, human bias, stress test, and time-to-recover. Findings reveal that CML outperforms traditional ML and existing approaches, offering superior risk prediction, interpretability, and decision-making support Additionally, the research explores the internal acceptance of these technologies through the Technology Acceptance Model (TAM). The results highlight the transformative potential of CML in enhancing supply chain resilience and efficiency. By bridging the gap between predictive analytics and explainable AI, this research offers valuable guidance for firms seeking to optimize supplier management using advanced analytics.</div></div>","PeriodicalId":101186,"journal":{"name":"Supply Chain Analytics","volume":"10 ","pages":"Article 100116"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supply Chain Analytics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949863525000160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient supplier escalation is crucial for maintaining smooth operational supply chains in the automotive industry, as disruptions can lead to significant production delays and financial losses. Many companies still rely on traditional escalation methods, which may lack the precision and adaptability offered by modern technologies. This study presents a comparative analysis of decision-making strategies for supplier escalation, evaluating causal machine learning (CML), traditional machine learning (ML), and current escalation practices in a leading German automotive company. The study employs an explanatory sequential mixed method, integrating the Analytical Hierarchy Process (AHP) with in-depth interviews with 25 industry experts. These methods are assessed based on several performance metrics: accuracy, business impact, explanation capability, human bias, stress test, and time-to-recover. Findings reveal that CML outperforms traditional ML and existing approaches, offering superior risk prediction, interpretability, and decision-making support Additionally, the research explores the internal acceptance of these technologies through the Technology Acceptance Model (TAM). The results highlight the transformative potential of CML in enhancing supply chain resilience and efficiency. By bridging the gap between predictive analytics and explainable AI, this research offers valuable guidance for firms seeking to optimize supplier management using advanced analytics.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信