A 0.05 mm3 diode-based single charged-particle real-time radiation detector for electron radiotherapy

IF 3.4 Q2 ONCOLOGY
Kyoungtae Lee , Rahul Lall , Michel M. Maharbiz , Mekhail Anwar
{"title":"A 0.05 mm3 diode-based single charged-particle real-time radiation detector for electron radiotherapy","authors":"Kyoungtae Lee ,&nbsp;Rahul Lall ,&nbsp;Michel M. Maharbiz ,&nbsp;Mekhail Anwar","doi":"10.1016/j.phro.2025.100762","DOIUrl":null,"url":null,"abstract":"<div><div>Real-time radiation monitoring at the single-particle level is an unmet need for electron radiotherapy, especially for dose deposition to targets in motion or critical OARs. We have developed a first-in-class CMOS-based 0.05 mm<sup>3</sup> single electron sensitive detector. The chiplet integrates all the requisite electronics. The functionality of the system is verified under 6 and 9 MeV clinical electron beams. Percentage depth vs. pulse-width curves for 6 and 9 MeV beams are measured and verified using Monte-Carlo simulations. The proposed system has the potential to enhance the electron radiotherapy quality and safety, providing real-time dosimetry from multiple sites simultaneously.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"34 ","pages":"Article 100762"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631625000673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Real-time radiation monitoring at the single-particle level is an unmet need for electron radiotherapy, especially for dose deposition to targets in motion or critical OARs. We have developed a first-in-class CMOS-based 0.05 mm3 single electron sensitive detector. The chiplet integrates all the requisite electronics. The functionality of the system is verified under 6 and 9 MeV clinical electron beams. Percentage depth vs. pulse-width curves for 6 and 9 MeV beams are measured and verified using Monte-Carlo simulations. The proposed system has the potential to enhance the electron radiotherapy quality and safety, providing real-time dosimetry from multiple sites simultaneously.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics and Imaging in Radiation Oncology
Physics and Imaging in Radiation Oncology Physics and Astronomy-Radiation
CiteScore
5.30
自引率
18.90%
发文量
93
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信