Artificial neural networks framework for investigating Hall and ion slip dynamics in Prandtl nanofluids using non-Fourier heat and mass transfer models

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Muhammad Idrees Afridi , Shazia Habib , Bandar Almohsen , Zeeshan Khan , Raheela Razzaq
{"title":"Artificial neural networks framework for investigating Hall and ion slip dynamics in Prandtl nanofluids using non-Fourier heat and mass transfer models","authors":"Muhammad Idrees Afridi ,&nbsp;Shazia Habib ,&nbsp;Bandar Almohsen ,&nbsp;Zeeshan Khan ,&nbsp;Raheela Razzaq","doi":"10.1016/j.chaos.2025.116408","DOIUrl":null,"url":null,"abstract":"<div><div>Artificial neural networks (ANNs) are widely applied in fluid mechanics and engineering to model complex relationships between input and output data. They facilitate pattern recognition, process optimization, and material property prediction. This study focuses on resolving the Hall ion effect in Prandtl nanofluid using a non-Fourier double diffusion theory-based model (HIE-PNF-NFDDT). The Levenberg-Marquardt backpropagated neural network (LMBNN) method is employed to analyze temperature, velocity, and concentration distributions. The dataset for training the ANN is obtained using the bvp4c solver. The study investigates the impact of the Hall effect and ion slip phenomena on the Cattaneo-Christov double heat flow model, leveraging the LMBNN algorithm to obtain solutions. Results indicate a direct correlation between velocity and the Hall parameter. Temperature increases with the Brownian motion parameter but decreases as the Hall parameter rises. Similarly, concentration increases with the Hall parameter but exhibits an inverse relationship with the relaxation time parameter. The performance of the proposed ANN model is evaluated using key metrics range of Mean Squared Error is detected as <span><math><msup><mn>10</mn><mrow><mo>−</mo><mn>9</mn></mrow></msup><mo>−</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>10</mn></mrow></msup></math></span>, while the Error Histograms ranges between <span><math><msup><mn>10</mn><mrow><mo>−</mo><mn>05</mn></mrow></msup><mo>−</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>07</mn></mrow></msup></math></span>.The gradient lies near <span><math><msup><mn>10</mn><mrow><mo>−</mo><mn>08</mn></mrow></msup></math></span>, while the <span><math><mi>Mu</mi></math></span> ranges between the interval <span><math><msup><mn>10</mn><mrow><mo>−</mo><mn>08</mn></mrow></msup><mo>−</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>09</mn></mrow></msup></math></span>. The AE lies in <span><math><msup><mn>10</mn><mrow><mo>−</mo><mn>03</mn></mrow></msup><mo>−</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>08</mn></mrow></msup></math></span>, which shows the accuracy and reliability of the suggested method. The proposed approach demonstrates rapid convergence, efficient modeling, and reduced computational costs, making it a powerful tool for solving complex nonlinear problems in engineering and fluid mechanics.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"196 ","pages":"Article 116408"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925004217","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial neural networks (ANNs) are widely applied in fluid mechanics and engineering to model complex relationships between input and output data. They facilitate pattern recognition, process optimization, and material property prediction. This study focuses on resolving the Hall ion effect in Prandtl nanofluid using a non-Fourier double diffusion theory-based model (HIE-PNF-NFDDT). The Levenberg-Marquardt backpropagated neural network (LMBNN) method is employed to analyze temperature, velocity, and concentration distributions. The dataset for training the ANN is obtained using the bvp4c solver. The study investigates the impact of the Hall effect and ion slip phenomena on the Cattaneo-Christov double heat flow model, leveraging the LMBNN algorithm to obtain solutions. Results indicate a direct correlation between velocity and the Hall parameter. Temperature increases with the Brownian motion parameter but decreases as the Hall parameter rises. Similarly, concentration increases with the Hall parameter but exhibits an inverse relationship with the relaxation time parameter. The performance of the proposed ANN model is evaluated using key metrics range of Mean Squared Error is detected as 1091010, while the Error Histograms ranges between 10051007.The gradient lies near 1008, while the Mu ranges between the interval 10081009. The AE lies in 10031008, which shows the accuracy and reliability of the suggested method. The proposed approach demonstrates rapid convergence, efficient modeling, and reduced computational costs, making it a powerful tool for solving complex nonlinear problems in engineering and fluid mechanics.
利用非傅立叶传热传质模型研究普朗特纳米流体中霍尔和离子滑移动力学的人工神经网络框架
人工神经网络(ann)广泛应用于流体力学和工程中,用于模拟输入和输出数据之间的复杂关系。它们有助于模式识别、工艺优化和材料性能预测。本研究的重点是利用基于非傅立叶双扩散理论的模型(hi - pnf - nfddt)解决普朗特纳米流体中的霍尔离子效应。采用Levenberg-Marquardt反向传播神经网络(LMBNN)方法分析温度、速度和浓度分布。使用bvp4c求解器获得训练人工神经网络的数据集。研究了Hall效应和离子滑移现象对Cattaneo-Christov双热流模型的影响,利用LMBNN算法求解。结果表明,速度与霍尔参数之间存在直接关系。温度随布朗运动参数升高而升高,随霍尔运动参数升高而降低。同样,浓度随霍尔参数的增加而增加,但与弛豫时间参数呈反比关系。所提出的人工神经网络模型的性能使用关键指标进行评估,检测到的均方误差范围为10−9−10−10,而误差直方图范围为10−05−10−07。梯度在10−08附近,而Mu在10−08−10−09之间。声发射范围为10−03−10−08,表明了方法的准确性和可靠性。该方法收敛速度快,建模效率高,计算成本低,是解决工程和流体力学中复杂非线性问题的有力工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信