FKBP5 mediates glucocorticoid signaling in estrogen deficiency-associated endothelial dysfunction

IF 4.2 3区 医学 Q1 PHARMACOLOGY & PHARMACY
Ruiwen Zhu , Yiyue Xu , Huixian Li , Chufeng He , Fung Ping Leung , Lin Wang , Wing Tak Wong
{"title":"FKBP5 mediates glucocorticoid signaling in estrogen deficiency-associated endothelial dysfunction","authors":"Ruiwen Zhu ,&nbsp;Yiyue Xu ,&nbsp;Huixian Li ,&nbsp;Chufeng He ,&nbsp;Fung Ping Leung ,&nbsp;Lin Wang ,&nbsp;Wing Tak Wong","doi":"10.1016/j.ejphar.2025.177598","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Cardiovascular disease (CVD) is the leading cause of mortality among postmenopausal women, with atherosclerosis being a major underlying factor. Endothelial dysfunction, a key initiating event in atherosclerosis, can be triggered by hormonal and metabolic changes. While estrogen deficiency has been linked to increased cardiovascular risk, the molecular mechanisms by which it exacerbates endothelial dysfunction, particularly in the presence of elevated glucocorticoid levels, remain poorly understood. This study aims to explore the role of FK506-binding protein 5 (FKBP5) in mediating glucocorticoid-induced endothelial dysfunction in estrogen-deficient females.</div></div><div><h3>Methods</h3><div>Estrogen deficiency was developed in female mice by ovariectomy (OVX). Female mice and human umbilical vein endothelial cells (HUVECs) were treated with dexamethasone (DEX) to mimic elevated cortisol levels <em>in vivo</em> and <em>vitro</em>. Endothelial function of the mice aorta was assessed using wire myography. Oxidative stress and inflammation were evaluated through reactive oxygen species (ROS) detection, immunofluorescence and mRNA expression analysis. The selective FKBP5 inhibitor SAFit2 was used to study the functional role of FKBP5 in these processes.</div></div><div><h3>Results</h3><div>Estrogen deficiency contributed to endothelial dysfunction in female mice, an effect exacerbated by elevated glucocorticoid levels. FKBP5 expression was upregulated in both ovariectomized mice aortas and DEX-treated endothelial cells. Inhibition of FKBP5 reversed endothelial dysfunction, reduced ROS levels, and suppressed the expression of pro-inflammatory mediators, including ICAM-1, IL-1β, TNF-α, and NF-κB.</div></div><div><h3>Conclusion</h3><div>FKBP5 mediates glucocorticoid-induced endothelial dysfunction under estrogen-deficient conditions. Inhibition of FKBP5 represents a promising therapeutic strategy to ameliorate endothelial dysfunction and improve vascular health in estrogen-deficient women.</div></div>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":"996 ","pages":"Article 177598"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014299925003528","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Cardiovascular disease (CVD) is the leading cause of mortality among postmenopausal women, with atherosclerosis being a major underlying factor. Endothelial dysfunction, a key initiating event in atherosclerosis, can be triggered by hormonal and metabolic changes. While estrogen deficiency has been linked to increased cardiovascular risk, the molecular mechanisms by which it exacerbates endothelial dysfunction, particularly in the presence of elevated glucocorticoid levels, remain poorly understood. This study aims to explore the role of FK506-binding protein 5 (FKBP5) in mediating glucocorticoid-induced endothelial dysfunction in estrogen-deficient females.

Methods

Estrogen deficiency was developed in female mice by ovariectomy (OVX). Female mice and human umbilical vein endothelial cells (HUVECs) were treated with dexamethasone (DEX) to mimic elevated cortisol levels in vivo and vitro. Endothelial function of the mice aorta was assessed using wire myography. Oxidative stress and inflammation were evaluated through reactive oxygen species (ROS) detection, immunofluorescence and mRNA expression analysis. The selective FKBP5 inhibitor SAFit2 was used to study the functional role of FKBP5 in these processes.

Results

Estrogen deficiency contributed to endothelial dysfunction in female mice, an effect exacerbated by elevated glucocorticoid levels. FKBP5 expression was upregulated in both ovariectomized mice aortas and DEX-treated endothelial cells. Inhibition of FKBP5 reversed endothelial dysfunction, reduced ROS levels, and suppressed the expression of pro-inflammatory mediators, including ICAM-1, IL-1β, TNF-α, and NF-κB.

Conclusion

FKBP5 mediates glucocorticoid-induced endothelial dysfunction under estrogen-deficient conditions. Inhibition of FKBP5 represents a promising therapeutic strategy to ameliorate endothelial dysfunction and improve vascular health in estrogen-deficient women.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.00
自引率
0.00%
发文量
572
审稿时长
34 days
期刊介绍: The European Journal of Pharmacology publishes research papers covering all aspects of experimental pharmacology with focus on the mechanism of action of structurally identified compounds affecting biological systems. The scope includes: Behavioural pharmacology Neuropharmacology and analgesia Cardiovascular pharmacology Pulmonary, gastrointestinal and urogenital pharmacology Endocrine pharmacology Immunopharmacology and inflammation Molecular and cellular pharmacology Regenerative pharmacology Biologicals and biotherapeutics Translational pharmacology Nutriceutical pharmacology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信