LOD1 3D city model from LiDAR: The impact of segmentation accuracy on quality of urban 3D modeling and morphology extraction

IF 3.8 Q2 ENVIRONMENTAL SCIENCES
Fatemeh Chajaei, Hossein Bagheri
{"title":"LOD1 3D city model from LiDAR: The impact of segmentation accuracy on quality of urban 3D modeling and morphology extraction","authors":"Fatemeh Chajaei,&nbsp;Hossein Bagheri","doi":"10.1016/j.rsase.2025.101534","DOIUrl":null,"url":null,"abstract":"<div><div>Three-dimensional reconstruction of buildings, particularly at Level of Detail 1 (LOD1), plays a crucial role in various applications such as urban planning, urban environmental studies, and designing optimized transportation networks. This study focuses on assessing the potential of LiDAR data for accurate 3D building reconstruction at LOD1 and extracting morphological features from these models. Four deep semantic segmentation models — U-Net, Attention U-Net, U-Net3+, and DeepLabV3+ — were used, applying transfer learning to extract building footprints from LiDAR data. The results showed that U-Net3+ and Attention U-Net outperformed the others, achieving IoU scores of 0.833 and 0.814, respectively. Various statistical measures, including maximum, range, mode, median, and the 90th percentile, were used to estimate building heights, resulting in the generation of 3D models at LOD1. As the main contribution of the research, the impact of segmentation accuracy on the quality of 3D building modeling and the accuracy of morphological features like building area and external wall surface area was investigated. The results showed that the accuracy of building identification (segmentation performance) significantly affects the 3D model quality and the estimation of morphological features, depending on the height calculation method. Overall, the UNet3+ method, utilizing the 90th percentile and median measures, leads to accurate height estimation of buildings and the extraction of morphological features.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"38 ","pages":"Article 101534"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938525000874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Three-dimensional reconstruction of buildings, particularly at Level of Detail 1 (LOD1), plays a crucial role in various applications such as urban planning, urban environmental studies, and designing optimized transportation networks. This study focuses on assessing the potential of LiDAR data for accurate 3D building reconstruction at LOD1 and extracting morphological features from these models. Four deep semantic segmentation models — U-Net, Attention U-Net, U-Net3+, and DeepLabV3+ — were used, applying transfer learning to extract building footprints from LiDAR data. The results showed that U-Net3+ and Attention U-Net outperformed the others, achieving IoU scores of 0.833 and 0.814, respectively. Various statistical measures, including maximum, range, mode, median, and the 90th percentile, were used to estimate building heights, resulting in the generation of 3D models at LOD1. As the main contribution of the research, the impact of segmentation accuracy on the quality of 3D building modeling and the accuracy of morphological features like building area and external wall surface area was investigated. The results showed that the accuracy of building identification (segmentation performance) significantly affects the 3D model quality and the estimation of morphological features, depending on the height calculation method. Overall, the UNet3+ method, utilizing the 90th percentile and median measures, leads to accurate height estimation of buildings and the extraction of morphological features.
基于LiDAR的LOD1三维城市模型:分割精度对城市三维建模和形态提取质量的影响
建筑物的三维重建,特别是LOD1的三维重建,在城市规划、城市环境研究和优化交通网络设计等各种应用中起着至关重要的作用。本研究的重点是评估激光雷达数据在LOD1精确三维建筑重建中的潜力,并从这些模型中提取形态特征。采用四种深度语义分割模型——U-Net、Attention U-Net、U-Net3+和DeepLabV3+,应用迁移学习从激光雷达数据中提取建筑足迹。结果表明,U-Net3+和Attention U-Net表现较好,IoU得分分别为0.833和0.814。使用各种统计方法,包括最大值、极差、模态、中位数和第90百分位,来估计建筑物高度,从而在LOD1上生成3D模型。作为本研究的主要贡献,研究了分割精度对三维建筑建模质量和建筑面积、外墙面积等形态特征精度的影响。结果表明,不同高度计算方法的建筑物识别精度(分割性能)显著影响三维模型质量和形态特征的估计。总体而言,UNet3+方法利用第90百分位和中位数度量,可以准确估计建筑物的高度并提取形态特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
8.50%
发文量
204
审稿时长
65 days
期刊介绍: The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信