{"title":"On well-posedness results for the cubic–quintic NLS on T3","authors":"Yongming Luo , Xueying Yu , Haitian Yue , Zehua Zhao","doi":"10.1016/j.na.2025.113806","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the periodic cubic–quintic nonlinear Schrödinger equation <span><span><span>(CQNLS)</span><span><math><mrow><mrow><mo>(</mo><mi>i</mi><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>Δ</mi><mo>)</mo></mrow><mi>u</mi><mo>=</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msub><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mn>4</mn></mrow></msup><mi>u</mi></mrow></math></span></span></span>on the three-dimensional torus <span><math><msup><mrow><mi>T</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> with <span><math><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mi>R</mi><mo>∖</mo><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow></mrow></math></span>. As a first result, we establish the small data well-posedness of for arbitrarily given <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. By adapting the crucial perturbation arguments in Zhang (2006) to the periodic setting, we also prove that is always globally well-posed in <span><math><mrow><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> in the case <span><math><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>></mo><mn>0</mn></mrow></math></span>.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"257 ","pages":"Article 113806"},"PeriodicalIF":1.3000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25000604","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the periodic cubic–quintic nonlinear Schrödinger equation (CQNLS)on the three-dimensional torus with . As a first result, we establish the small data well-posedness of for arbitrarily given and . By adapting the crucial perturbation arguments in Zhang (2006) to the periodic setting, we also prove that is always globally well-posed in in the case .
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.