Hexosamine biosynthesis dysfunction-induced LIFR N-glycosylation deficiency exacerbates steatotic liver ischemia/reperfusion injury

IF 10.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Ran Liu , Gengqiao Wang , Yongbing Qian , Zhengting Jiang , Weimin Wang , Mao Cai , Shuhua Zhang , Guoliang Wang , Chuanzheng Wang , Tianhao Zou , Huan Cao , Di Zhang , Xueling Wang , Shenghe Deng , Tongxi Li , Jinyang Gu
{"title":"Hexosamine biosynthesis dysfunction-induced LIFR N-glycosylation deficiency exacerbates steatotic liver ischemia/reperfusion injury","authors":"Ran Liu ,&nbsp;Gengqiao Wang ,&nbsp;Yongbing Qian ,&nbsp;Zhengting Jiang ,&nbsp;Weimin Wang ,&nbsp;Mao Cai ,&nbsp;Shuhua Zhang ,&nbsp;Guoliang Wang ,&nbsp;Chuanzheng Wang ,&nbsp;Tianhao Zou ,&nbsp;Huan Cao ,&nbsp;Di Zhang ,&nbsp;Xueling Wang ,&nbsp;Shenghe Deng ,&nbsp;Tongxi Li ,&nbsp;Jinyang Gu","doi":"10.1016/j.metabol.2025.156258","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>More and more steatotic livers undergo resection or transplantation but they exhibit higher susceptibility to ischemia-reperfusion injury (IRI), which results in increased perioperative complication morbidity and mortality. IRI is driven by various cytokines and receptors, both of which are extensively modified by N-glycosylation. We aim to elucidate susceptibility of steatotic livers to IRI from the perspective of N-glycosylation.</div></div><div><h3>Methods</h3><div>Differentially expressed genes and glycoproteins were identified with RNA-seq and N-glycoproteomics. Myeloid LIF or hepatocyte LIFR knockout mice were developed to examine the function of LIF and LIFR. Modalities including phosphoproteomics, ChIP-seq, single cell RNA-seq, metabolomics and immunoblotting were utilized to investigate underlying mechanisms.</div></div><div><h3>Results</h3><div>LIF transcription in myeloid cells and LIFR N-glycosylation in hepatocytes were substantially induced by IRI of normal livers. LIF and LIFR protected normal livers from IRI through activating STAT3 and promoting downstream TNFAIP3 expression, which was facilitated by LIFR N-glycosylation. Mechanistically, N-glycosylation at N238 stabilized LIFR protein by disrupting TRIM28-mediated K48 ubiquitination at LIFR K254. Furthermore, N-glycosylation at N358/N658/N675 of LIFR facilitated LIF/LIFR/gp130 complex formation and subsequent signal transduction. However, in steatotic livers, myeloid cell LIF transcription was partially inhibited due to hepatic microenvironment L-arginine insufficiency, while hepatocyte LIFR N-glycosylation was defective due to intracellular UDP-GlcNAc exhaustion. Importantly, combined L-arginine and GlcNAc treatment reversed LIF expression and LIFR N-glycosylation insufficiency, which represents potential therapeutic strategy to protect steatotic livers.</div></div><div><h3>Conclusions</h3><div>LIF expression and LIFR N-glycosylation insufficiency aggravates steatotic liver IRI, which can be reversed by combined L-arginine and GlcNAc treatment.</div></div>","PeriodicalId":18694,"journal":{"name":"Metabolism: clinical and experimental","volume":"168 ","pages":"Article 156258"},"PeriodicalIF":10.8000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolism: clinical and experimental","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026049525001271","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Background

More and more steatotic livers undergo resection or transplantation but they exhibit higher susceptibility to ischemia-reperfusion injury (IRI), which results in increased perioperative complication morbidity and mortality. IRI is driven by various cytokines and receptors, both of which are extensively modified by N-glycosylation. We aim to elucidate susceptibility of steatotic livers to IRI from the perspective of N-glycosylation.

Methods

Differentially expressed genes and glycoproteins were identified with RNA-seq and N-glycoproteomics. Myeloid LIF or hepatocyte LIFR knockout mice were developed to examine the function of LIF and LIFR. Modalities including phosphoproteomics, ChIP-seq, single cell RNA-seq, metabolomics and immunoblotting were utilized to investigate underlying mechanisms.

Results

LIF transcription in myeloid cells and LIFR N-glycosylation in hepatocytes were substantially induced by IRI of normal livers. LIF and LIFR protected normal livers from IRI through activating STAT3 and promoting downstream TNFAIP3 expression, which was facilitated by LIFR N-glycosylation. Mechanistically, N-glycosylation at N238 stabilized LIFR protein by disrupting TRIM28-mediated K48 ubiquitination at LIFR K254. Furthermore, N-glycosylation at N358/N658/N675 of LIFR facilitated LIF/LIFR/gp130 complex formation and subsequent signal transduction. However, in steatotic livers, myeloid cell LIF transcription was partially inhibited due to hepatic microenvironment L-arginine insufficiency, while hepatocyte LIFR N-glycosylation was defective due to intracellular UDP-GlcNAc exhaustion. Importantly, combined L-arginine and GlcNAc treatment reversed LIF expression and LIFR N-glycosylation insufficiency, which represents potential therapeutic strategy to protect steatotic livers.

Conclusions

LIF expression and LIFR N-glycosylation insufficiency aggravates steatotic liver IRI, which can be reversed by combined L-arginine and GlcNAc treatment.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Metabolism: clinical and experimental
Metabolism: clinical and experimental 医学-内分泌学与代谢
CiteScore
18.90
自引率
3.10%
发文量
310
审稿时长
16 days
期刊介绍: Metabolism upholds research excellence by disseminating high-quality original research, reviews, editorials, and commentaries covering all facets of human metabolism. Consideration for publication in Metabolism extends to studies in humans, animal, and cellular models, with a particular emphasis on work demonstrating strong translational potential. The journal addresses a range of topics, including: - Energy Expenditure and Obesity - Metabolic Syndrome, Prediabetes, and Diabetes - Nutrition, Exercise, and the Environment - Genetics and Genomics, Proteomics, and Metabolomics - Carbohydrate, Lipid, and Protein Metabolism - Endocrinology and Hypertension - Mineral and Bone Metabolism - Cardiovascular Diseases and Malignancies - Inflammation in metabolism and immunometabolism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信