Unitary and entangling solutions to the parametric Yang–Baxter equation in all dimensions

Q2 Physics and Astronomy
Arash Pourkia
{"title":"Unitary and entangling solutions to the parametric Yang–Baxter equation in all dimensions","authors":"Arash Pourkia","doi":"10.1016/j.physo.2025.100263","DOIUrl":null,"url":null,"abstract":"<div><div>We present a new class of solutions to the parameter-dependent Yang–Baxter equation across all dimensions, which includes a significant subclass of unitary and entangling solutions. In any dimension <span><math><mrow><mi>d</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, we construct a well-structured matrix <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> that exhibits intriguing and useful symmetries. A key feature of <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> is its composition from four <em>monomial-based</em> layers: <span><span><span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>a</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></msup><mo>+</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>b</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></msup><mo>+</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>x</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></msup><mo>+</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>y</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></msup><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mi>a</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>b</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>x</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>y</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> are four sets of monomial complex functions of the form, <span><math><mrow><mi>a</mi><msup><mrow><mi>u</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>a</mi></mrow></msub></mrow></msup></mrow></math></span>, <span><math><mrow><mi>b</mi><msup><mrow><mi>u</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>b</mi></mrow></msub></mrow></msup></mrow></math></span>, <span><math><mrow><mi>x</mi><msup><mrow><mi>u</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>x</mi></mrow></msub></mrow></msup></mrow></math></span> and <span><math><mrow><mi>y</mi><msup><mrow><mi>u</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>y</mi></mrow></msub></mrow></msup></mrow></math></span>, respectively. This well-designed structure plays a crucial role in demonstrating that <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> is indeed a solution to the Yang–Baxter equation and in establishing the conditions for its unitarity and entangling properties. Additionally, it allows us to identify interesting non-trivial subfamilies with these properties.</div><div>As is widely recognized, unitary and entangling solutions to the Yang–Baxter equation serve as universal quantum logic gates for qudit quantum computing. Moreover, the search for new solutions to the Yang–Baxter equation in higher dimensions is a common endeavor in both mathematics and physics.</div></div>","PeriodicalId":36067,"journal":{"name":"Physics Open","volume":"23 ","pages":"Article 100263"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666032625000134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We present a new class of solutions to the parameter-dependent Yang–Baxter equation across all dimensions, which includes a significant subclass of unitary and entangling solutions. In any dimension d2, we construct a well-structured matrix R(u) that exhibits intriguing and useful symmetries. A key feature of R(u) is its composition from four monomial-based layers: R(u)=Ra(u)+Rb(u)+Rx(u)+Ry(u),where a(u), b(u), x(u) and y(u) are four sets of monomial complex functions of the form, auna, bunb, xunx and yuny, respectively. This well-designed structure plays a crucial role in demonstrating that R(u) is indeed a solution to the Yang–Baxter equation and in establishing the conditions for its unitarity and entangling properties. Additionally, it allows us to identify interesting non-trivial subfamilies with these properties.
As is widely recognized, unitary and entangling solutions to the Yang–Baxter equation serve as universal quantum logic gates for qudit quantum computing. Moreover, the search for new solutions to the Yang–Baxter equation in higher dimensions is a common endeavor in both mathematics and physics.
全维参数Yang-Baxter方程的酉解和纠缠解
本文给出了参数相关Yang-Baxter方程在所有维度上的一类新的解,其中包括一个重要的幺正解和纠缠解的子类。在任何维度d≥2,我们构造了一个结构良好的矩阵R(u),它表现出有趣和有用的对称性。R(u)的一个关键特征是它由四个基于单项式的层组成:R(u)=Ra(u)+Rb(u)+Rx(u)+Ry(u),其中A (u), b(u), x(u)和y(u)分别是四组单项式复函数,形式为auna, bunb, xunx和yny。这种精心设计的结构在证明R(u)确实是Yang-Baxter方程的解以及建立其一致性和纠缠性的条件方面起着至关重要的作用。此外,它还允许我们识别具有这些属性的有趣的非平凡子族。众所周知,Yang-Baxter方程的幺正解和纠缠解是量子量子计算的通用量子逻辑门。此外,寻找高维杨-巴克斯特方程的新解是数学和物理学的共同努力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics Open
Physics Open Physics and Astronomy-Physics and Astronomy (all)
CiteScore
3.20
自引率
0.00%
发文量
19
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信