Yadong Xu , Sheng Li , Ke Feng , Ruyi Huang , Beibei Sun , Xiaolong Yang , Zhiheng Zhao , George Q. Huang
{"title":"Domain constrained cascadic multireceptive learning networks for machine health monitoring in complex manufacturing systems","authors":"Yadong Xu , Sheng Li , Ke Feng , Ruyi Huang , Beibei Sun , Xiaolong Yang , Zhiheng Zhao , George Q. Huang","doi":"10.1016/j.jmsy.2025.03.021","DOIUrl":null,"url":null,"abstract":"<div><div>Precise condition monitoring of manufacturing systems is crucial for maintaining efficient industrial production. In practical manufacturing applications, typical components of manufacturing system such as gearboxes and bearings mainly operate under fluctuating conditions, resulting in obvious nonlinear characteristics in the monitored vibration signals. Nonetheless, numerous extant algorithms are crafted based on the stationary presumption that the signal’s amplitude and frequency remain constant, failing to reflect the real-world scenarios prevalent in industrial environments. In this research, we propose a domain constrained cascadic multirepetive learning network as a response to this challenge. Initially, we leverage cascadic multireceptive learning modules, multiscale feature aggregation modules, and an adaptive filtering module to establish the feature extractor for acquiring multireceptive and multilevel features from monitored signals. Next, a conditional label regulation loss is devised as the loss function to enhance the model’s robustness in complex scenarios. Finally, a domain constrained label adjuster is designed to align the actual labels based on the input data, thereby guiding the feature extractor in learning the domain-invariant feature. Three case studies demonstrate that the DC-CMLN model outperforms seven state-of-the-art algorithms, particularly when applied to mechanical datasets collected under nonstationary conditions.</div></div>","PeriodicalId":16227,"journal":{"name":"Journal of Manufacturing Systems","volume":"80 ","pages":"Pages 563-577"},"PeriodicalIF":12.2000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278612525000822","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Precise condition monitoring of manufacturing systems is crucial for maintaining efficient industrial production. In practical manufacturing applications, typical components of manufacturing system such as gearboxes and bearings mainly operate under fluctuating conditions, resulting in obvious nonlinear characteristics in the monitored vibration signals. Nonetheless, numerous extant algorithms are crafted based on the stationary presumption that the signal’s amplitude and frequency remain constant, failing to reflect the real-world scenarios prevalent in industrial environments. In this research, we propose a domain constrained cascadic multirepetive learning network as a response to this challenge. Initially, we leverage cascadic multireceptive learning modules, multiscale feature aggregation modules, and an adaptive filtering module to establish the feature extractor for acquiring multireceptive and multilevel features from monitored signals. Next, a conditional label regulation loss is devised as the loss function to enhance the model’s robustness in complex scenarios. Finally, a domain constrained label adjuster is designed to align the actual labels based on the input data, thereby guiding the feature extractor in learning the domain-invariant feature. Three case studies demonstrate that the DC-CMLN model outperforms seven state-of-the-art algorithms, particularly when applied to mechanical datasets collected under nonstationary conditions.
期刊介绍:
The Journal of Manufacturing Systems is dedicated to showcasing cutting-edge fundamental and applied research in manufacturing at the systems level. Encompassing products, equipment, people, information, control, and support functions, manufacturing systems play a pivotal role in the economical and competitive development, production, delivery, and total lifecycle of products, meeting market and societal needs.
With a commitment to publishing archival scholarly literature, the journal strives to advance the state of the art in manufacturing systems and foster innovation in crafting efficient, robust, and sustainable manufacturing systems. The focus extends from equipment-level considerations to the broader scope of the extended enterprise. The Journal welcomes research addressing challenges across various scales, including nano, micro, and macro-scale manufacturing, and spanning diverse sectors such as aerospace, automotive, energy, and medical device manufacturing.