Sijie Li, Jingyi Sun, He Li, Zhifa Han, Tao Wang, Shan Gao, Ping Zhu, Yan Chen, Peiguang Yan, Mingxin Wang, Guiyou Liu
{"title":"Expression of SARS-CoV-2 entry receptor ACE2 in human brain and its association with Alzheimer’s disease and COVID-19","authors":"Sijie Li, Jingyi Sun, He Li, Zhifa Han, Tao Wang, Shan Gao, Ping Zhu, Yan Chen, Peiguang Yan, Mingxin Wang, Guiyou Liu","doi":"10.1038/s41380-025-03006-z","DOIUrl":null,"url":null,"abstract":"<p>It is known that infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause coronavirus disease 2019 (COVID-19). It is widely reported that Alzheimer’s disease (AD) is associated with the highest risk of COVID-19 infection, hospitalization and mortality. However, it remains largely unclear about the link between AD and COVID-19. ACE2 is an entry receptor for SARS-CoV-2. We consider that there may be a link between AD and COVID-19 through the expression of ACE2. Here, we summarize recent findings about the ACE2 expression especially in AD and COVID-19, and shows that (1) ACE2 shows mRNA and protein expression in human brain tissues, especially in neurons and non-neuron cells; (2) low ACE2 mRNA and protein expression are sufficient for SARS-CoV-2 entry into the human brain through the neural route (olfactory and/or vagal) and the hematogenous route; (3) SARS-CoV-2 RNA and protein were detected in brains of COVID-19 patients; (4) SARS-CoV-2 infects and replicates in human brain dependent on ACE2; (5) SARS-CoV-2 viral RNA load shows a positive association with ACE2 mRNA levels and COVID-19 severity; (6) ACE2 shows increased expression in AD compared with controls in human brain; (7) ACE2 shows increased expression in COVID-19 compared with controls in human brain; (8) ACE2 expression levels affect COVID-19 outcomes. Together, ACE2 shows significantly increased mRNA and protein expression in AD compared with controls in human brain. Consequently, the increased expression of ACE2 would facilitate infection with SARS-CoV-2, and play a role in the context of COVID-19. These findings suggest that the expression of ACE2 may partly explain the link of AD with COVID-19 infection, hospitalization and mortality.</p>","PeriodicalId":19008,"journal":{"name":"Molecular Psychiatry","volume":"59 8 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41380-025-03006-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
It is known that infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause coronavirus disease 2019 (COVID-19). It is widely reported that Alzheimer’s disease (AD) is associated with the highest risk of COVID-19 infection, hospitalization and mortality. However, it remains largely unclear about the link between AD and COVID-19. ACE2 is an entry receptor for SARS-CoV-2. We consider that there may be a link between AD and COVID-19 through the expression of ACE2. Here, we summarize recent findings about the ACE2 expression especially in AD and COVID-19, and shows that (1) ACE2 shows mRNA and protein expression in human brain tissues, especially in neurons and non-neuron cells; (2) low ACE2 mRNA and protein expression are sufficient for SARS-CoV-2 entry into the human brain through the neural route (olfactory and/or vagal) and the hematogenous route; (3) SARS-CoV-2 RNA and protein were detected in brains of COVID-19 patients; (4) SARS-CoV-2 infects and replicates in human brain dependent on ACE2; (5) SARS-CoV-2 viral RNA load shows a positive association with ACE2 mRNA levels and COVID-19 severity; (6) ACE2 shows increased expression in AD compared with controls in human brain; (7) ACE2 shows increased expression in COVID-19 compared with controls in human brain; (8) ACE2 expression levels affect COVID-19 outcomes. Together, ACE2 shows significantly increased mRNA and protein expression in AD compared with controls in human brain. Consequently, the increased expression of ACE2 would facilitate infection with SARS-CoV-2, and play a role in the context of COVID-19. These findings suggest that the expression of ACE2 may partly explain the link of AD with COVID-19 infection, hospitalization and mortality.
期刊介绍:
Molecular Psychiatry focuses on publishing research that aims to uncover the biological mechanisms behind psychiatric disorders and their treatment. The journal emphasizes studies that bridge pre-clinical and clinical research, covering cellular, molecular, integrative, clinical, imaging, and psychopharmacology levels.