CRISPRi-based screen of autism spectrum disorder risk genes in microglia uncovers roles of ADNP in microglia endocytosis and synaptic pruning

IF 9.6 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Olivia M. Teter, Amanda McQuade, Venus Hagan, Weiwei Liang, Nina M. Dräger, Sydney M. Sattler, Brandon B. Holmes, Vincent Cele Castillo, Vasileios Papakis, Kun Leng, Steven Boggess, Tomasz J. Nowakowski, James Wells, Martin Kampmann
{"title":"CRISPRi-based screen of autism spectrum disorder risk genes in microglia uncovers roles of ADNP in microglia endocytosis and synaptic pruning","authors":"Olivia M. Teter, Amanda McQuade, Venus Hagan, Weiwei Liang, Nina M. Dräger, Sydney M. Sattler, Brandon B. Holmes, Vincent Cele Castillo, Vasileios Papakis, Kun Leng, Steven Boggess, Tomasz J. Nowakowski, James Wells, Martin Kampmann","doi":"10.1038/s41380-025-02997-z","DOIUrl":null,"url":null,"abstract":"<p>Autism Spectrum Disorders (ASD) are a set of neurodevelopmental disorders with complex biology. The identification of ASD risk genes from exome-wide association studies and de novo variation analyses has enabled mechanistic investigations into how ASD-risk genes alter development. Most functional genomics studies have focused on the role of these genes in neurons and neural progenitor cells. However, roles for ASD risk genes in other cell types are largely uncharacterized. There is evidence from postmortem tissue that microglia, the resident immune cells of the brain, appear activated in ASD. Here, we used CRISPRi-based functional genomics to systematically assess the impact of ASD risk gene knockdown on microglia activation and phagocytosis. We developed an iPSC-derived microglia-neuron coculture system and high-throughput flow cytometry readout for synaptic pruning to enable parallel CRISPRi-based screening of phagocytosis of beads, synaptosomes, and synaptic pruning. Our screen identified <i>ADNP</i>, a high-confidence ASD risk genes, as a modifier of microglial synaptic pruning. We found that microglia with ADNP loss have altered endocytic trafficking, remodeled proteomes, and increased motility in coculture.</p>","PeriodicalId":19008,"journal":{"name":"Molecular Psychiatry","volume":"25 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41380-025-02997-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Autism Spectrum Disorders (ASD) are a set of neurodevelopmental disorders with complex biology. The identification of ASD risk genes from exome-wide association studies and de novo variation analyses has enabled mechanistic investigations into how ASD-risk genes alter development. Most functional genomics studies have focused on the role of these genes in neurons and neural progenitor cells. However, roles for ASD risk genes in other cell types are largely uncharacterized. There is evidence from postmortem tissue that microglia, the resident immune cells of the brain, appear activated in ASD. Here, we used CRISPRi-based functional genomics to systematically assess the impact of ASD risk gene knockdown on microglia activation and phagocytosis. We developed an iPSC-derived microglia-neuron coculture system and high-throughput flow cytometry readout for synaptic pruning to enable parallel CRISPRi-based screening of phagocytosis of beads, synaptosomes, and synaptic pruning. Our screen identified ADNP, a high-confidence ASD risk genes, as a modifier of microglial synaptic pruning. We found that microglia with ADNP loss have altered endocytic trafficking, remodeled proteomes, and increased motility in coculture.

Abstract Image

基于crispr的小胶质细胞自闭症谱系障碍风险基因筛选揭示ADNP在小胶质细胞内吞作用和突触修剪中的作用
自闭症谱系障碍(ASD)是一组具有复杂生物学特征的神经发育障碍。从全外显子组关联研究和从头变异分析中鉴定出ASD风险基因,使得对ASD风险基因如何改变发育的机制研究成为可能。大多数功能基因组学研究都集中在这些基因在神经元和神经祖细胞中的作用。然而,ASD风险基因在其他细胞类型中的作用在很大程度上是未知的。有来自死后组织的证据表明,小胶质细胞,大脑的常驻免疫细胞,似乎在ASD中被激活。在这里,我们使用基于crispr的功能基因组学系统评估ASD风险基因敲低对小胶质细胞激活和吞噬的影响。我们开发了ipsc衍生的小胶质细胞-神经元共培养系统和用于突触修剪的高通量流式细胞仪读数,以实现基于crispr的并行筛选珠粒、突触体和突触修剪的吞噬。我们的筛选确定了ADNP,一个高可信度的ASD风险基因,作为小胶质突触修剪的修饰因子。我们发现ADNP缺失的小胶质细胞在共培养中改变了内吞运输,重塑了蛋白质组,并增加了运动性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Psychiatry
Molecular Psychiatry 医学-精神病学
CiteScore
20.50
自引率
4.50%
发文量
459
审稿时长
4-8 weeks
期刊介绍: Molecular Psychiatry focuses on publishing research that aims to uncover the biological mechanisms behind psychiatric disorders and their treatment. The journal emphasizes studies that bridge pre-clinical and clinical research, covering cellular, molecular, integrative, clinical, imaging, and psychopharmacology levels.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信