Visagreement: Visualizing and Exploring Explanations (Dis)Agreement.

Priscylla Silva, Vitoria Guardieiro, Brian Barr, Claudio Silva, Luis Gustavo Nonato
{"title":"Visagreement: Visualizing and Exploring Explanations (Dis)Agreement.","authors":"Priscylla Silva, Vitoria Guardieiro, Brian Barr, Claudio Silva, Luis Gustavo Nonato","doi":"10.1109/TVCG.2025.3558074","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence of distinct machine learning explanation methods has leveraged a number of new issues to be investigated. The disagreement problem is one such issue, as there may be scenarios where the output of different explanation methods disagree with each other. Although understanding how often, when, and where explanation methods agree or disagree is important to increase confidence in the explanations, few works have been dedicated to investigating such a problem. In this work, we proposed Visagreement, a visualization tool designed to assist practitioners in investigating the disagreement problem. Visagreement builds upon metrics to quantitatively compare and evaluate explanations, enabling visual resources to uncover where and why methods mostly agree or disagree. The tool is tailored for tabular data with binary classification and focuses on local feature importance methods. In the provided use cases, Visagreement turned out to be effective in revealing, among other phenomena, how disagreements relate to the quality of the explanations and machine learning model accuracy, thus assisting users in deciding where and when to trust explanations. To assess the effectiveness and practical utility of Visagreement, we conducted an evaluation involving four experts. These experts assessed the tool's Effectiveness, Usability, and Impact on Decision-Making. The experts confirm the Visagreement tool's effectiveness and user-friendliness, making it a valuable asset for analyzing and exploring (dis)agreements.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2025.3558074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of distinct machine learning explanation methods has leveraged a number of new issues to be investigated. The disagreement problem is one such issue, as there may be scenarios where the output of different explanation methods disagree with each other. Although understanding how often, when, and where explanation methods agree or disagree is important to increase confidence in the explanations, few works have been dedicated to investigating such a problem. In this work, we proposed Visagreement, a visualization tool designed to assist practitioners in investigating the disagreement problem. Visagreement builds upon metrics to quantitatively compare and evaluate explanations, enabling visual resources to uncover where and why methods mostly agree or disagree. The tool is tailored for tabular data with binary classification and focuses on local feature importance methods. In the provided use cases, Visagreement turned out to be effective in revealing, among other phenomena, how disagreements relate to the quality of the explanations and machine learning model accuracy, thus assisting users in deciding where and when to trust explanations. To assess the effectiveness and practical utility of Visagreement, we conducted an evaluation involving four experts. These experts assessed the tool's Effectiveness, Usability, and Impact on Decision-Making. The experts confirm the Visagreement tool's effectiveness and user-friendliness, making it a valuable asset for analyzing and exploring (dis)agreements.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信