{"title":"Unified Smooth Vector Graphics: Modeling Gradient Meshes and Curve-based Approaches Jointly as Poisson Problem.","authors":"Xingze Tian, Tobias Gunther","doi":"10.1109/TVCG.2025.3558263","DOIUrl":null,"url":null,"abstract":"<p><p>Research on smooth vector graphics is separated into two independent research threads: one on interpolationbased gradient meshes and the other on diffusion-based curve formulations. With this paper, we propose a mathematical formulation that unifies gradient meshes and curve-based approaches as solution to a Poisson problem. To combine these two well-known representations, we first generate a non-overlapping intermediate patch representation that specifies for each patch a target Laplacian and boundary conditions. Unifying the treatment of boundary conditions adds further artistic degrees of freedoms to the existing formulations, such as Neumann conditions on diffusion curves. To synthesize a raster image for a given output resolution, we then rasterize boundary conditions and Laplacians for the respective patches and compute the final image as solution to a Poisson problem. We evaluate the method on various test scenes containing gradient meshes and curve-based primitives. Since our mathematical formulation works with established smooth vector graphics primitives on the front-end, it is compatible with existing content creation pipelines and with established editing tools. Rather than continuing two separate research paths, we hope that a unification of the formulations will lead to new rasterization and vectorization tools in the future that utilize the strengths of both approaches.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2025.3558263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Research on smooth vector graphics is separated into two independent research threads: one on interpolationbased gradient meshes and the other on diffusion-based curve formulations. With this paper, we propose a mathematical formulation that unifies gradient meshes and curve-based approaches as solution to a Poisson problem. To combine these two well-known representations, we first generate a non-overlapping intermediate patch representation that specifies for each patch a target Laplacian and boundary conditions. Unifying the treatment of boundary conditions adds further artistic degrees of freedoms to the existing formulations, such as Neumann conditions on diffusion curves. To synthesize a raster image for a given output resolution, we then rasterize boundary conditions and Laplacians for the respective patches and compute the final image as solution to a Poisson problem. We evaluate the method on various test scenes containing gradient meshes and curve-based primitives. Since our mathematical formulation works with established smooth vector graphics primitives on the front-end, it is compatible with existing content creation pipelines and with established editing tools. Rather than continuing two separate research paths, we hope that a unification of the formulations will lead to new rasterization and vectorization tools in the future that utilize the strengths of both approaches.