Cell-free DNA Fragmentomics Assay to Discriminate the Malignancy of Breast Nodules and Evaluate Treatment Response.

Jiaqi Liu, Yalun Li, Wanxiangfu Tang, Tianyi Qian, Lijun Dai, Ziqi Jia, Heng Cao, Chenghao Li, Yuchen Liu, Yansong Huang, Jiang Wu, Dongxu Ma, Guangdong Qiao, Hua Bao, Shuang Chang, Dongqin Zhu, Shanshan Yang, Xuxiaochen Wu, Xue Wu, Hengyi Xu, Hongyan Chen, Yang Shao, Xiang Wang, Zhihua Liu, Jianzhong Su
{"title":"Cell-free DNA Fragmentomics Assay to Discriminate the Malignancy of Breast Nodules and Evaluate Treatment Response.","authors":"Jiaqi Liu, Yalun Li, Wanxiangfu Tang, Tianyi Qian, Lijun Dai, Ziqi Jia, Heng Cao, Chenghao Li, Yuchen Liu, Yansong Huang, Jiang Wu, Dongxu Ma, Guangdong Qiao, Hua Bao, Shuang Chang, Dongqin Zhu, Shanshan Yang, Xuxiaochen Wu, Xue Wu, Hengyi Xu, Hongyan Chen, Yang Shao, Xiang Wang, Zhihua Liu, Jianzhong Su","doi":"10.1093/gpbjnl/qzaf028","DOIUrl":null,"url":null,"abstract":"<p><p>The fragmentomics-based cell-free DNA (cfDNA) assays have recently illustrated prominent abilities to identify various cancers from non-conditional healthy controls, while their accuracy for identifying early-stage cancers from benign lesions with inconclusive imaging results remains uncertain. Especially for breast cancer, current imaging-based screening methods suffer from high false positive rates for women with breast nodules, leading to unnecessary biopsies, which add to discomfort and healthcare burden. Here, we enrolled 613 female participants in this multi-center study and demonstrated that cfDNA fragmentomics (cfFrag) is a robust non-invasive biomarker for breast cancer using whole-genome sequencing. Among the multimodal cfFrag profiles, the fragment size ratio (FSR), fragment size distribution (FSD), and copy number variation (CNV) show more distinguishing ability than Griffin, motif breakpoint (MBP), and neomer. The cfFrag model using the optimal three fragmentomics features discriminated early-stage breast cancers from benign nodules, even at a low sequencing depth (3×). Notably, it demonstrated a specificity of 94.1% in asymptomatic healthy women at a 90% sensitivity for breast cancers. Moreover, we comprehensively showcased the clinical utilities of the cfFrag model in predicting patient responses to neoadjuvant chemotherapy (NAC) and in combining with multimodal features, including radiological results and cfDNA methylation features [with area under the curve (AUC) values of 0.93-0.94 and 0.96, respectively].</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, proteomics & bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gpbjnl/qzaf028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The fragmentomics-based cell-free DNA (cfDNA) assays have recently illustrated prominent abilities to identify various cancers from non-conditional healthy controls, while their accuracy for identifying early-stage cancers from benign lesions with inconclusive imaging results remains uncertain. Especially for breast cancer, current imaging-based screening methods suffer from high false positive rates for women with breast nodules, leading to unnecessary biopsies, which add to discomfort and healthcare burden. Here, we enrolled 613 female participants in this multi-center study and demonstrated that cfDNA fragmentomics (cfFrag) is a robust non-invasive biomarker for breast cancer using whole-genome sequencing. Among the multimodal cfFrag profiles, the fragment size ratio (FSR), fragment size distribution (FSD), and copy number variation (CNV) show more distinguishing ability than Griffin, motif breakpoint (MBP), and neomer. The cfFrag model using the optimal three fragmentomics features discriminated early-stage breast cancers from benign nodules, even at a low sequencing depth (3×). Notably, it demonstrated a specificity of 94.1% in asymptomatic healthy women at a 90% sensitivity for breast cancers. Moreover, we comprehensively showcased the clinical utilities of the cfFrag model in predicting patient responses to neoadjuvant chemotherapy (NAC) and in combining with multimodal features, including radiological results and cfDNA methylation features [with area under the curve (AUC) values of 0.93-0.94 and 0.96, respectively].

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信