Membrane Binding and Cholesterol Sensing Motif in Mycoplasma genitalium FtsZ: A Novel Mode of Membrane Recruitment for Bacterial FtsZ.

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Soumyajit Dutta, Sakshi Poddar, Joyeeta Chakraborty, Ramanujam Srinivasan, Pananghat Gayathri
{"title":"Membrane Binding and Cholesterol Sensing Motif in <i>Mycoplasma genitalium</i> FtsZ: A Novel Mode of Membrane Recruitment for Bacterial FtsZ.","authors":"Soumyajit Dutta, Sakshi Poddar, Joyeeta Chakraborty, Ramanujam Srinivasan, Pananghat Gayathri","doi":"10.1021/acs.biochem.4c00543","DOIUrl":null,"url":null,"abstract":"<p><p>Cell division in bacteria is initiated by constriction of the Z-ring comprising two essential proteins, FtsZ and FtsA. Though the essential function of the Z-ring in bacterial division has been established, the precise roles of FtsZ and FtsA in the constriction process remain elusive. Due to the minimal number of components, FtsZ/FtsA in cell wall-less bacteria is an ideal model system for obtaining mechanistic insights into Z-ring constriction in the absence of a cell wall synthesis machinery. In this study, we undertook a comparative analysis of FtsZ and FtsA protein sequences from 113 mycoplasma species and the corresponding sequences in cell-walled bacteria. We report a phylogenetically distinct group of 12 species that possess a putative membrane binding amphipathic helix at either the N- or C-terminal extensions of the globular FtsZ domain. Importantly, these FtsZs lack conservation of the conserved C-terminal peptide sequence. We experimentally prove that the proposed C-terminal amphipathic helix in <i>Mycoplasma genitalium</i> (<i>M. genitalium</i>) FtsZ exhibits membrane binding. Additionally, we identify a potential cholesterol recognition motif within the C-terminal amphipathic helix region of <i>M. genitalium</i> FtsZ. Our study catalogues the functional variations of membrane attachment by the FtsZ and FtsA system in cell wall-less mycoplasmas and provides a new perspective to dissect the role of FtsZ and FtsA in cell division.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00543","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cell division in bacteria is initiated by constriction of the Z-ring comprising two essential proteins, FtsZ and FtsA. Though the essential function of the Z-ring in bacterial division has been established, the precise roles of FtsZ and FtsA in the constriction process remain elusive. Due to the minimal number of components, FtsZ/FtsA in cell wall-less bacteria is an ideal model system for obtaining mechanistic insights into Z-ring constriction in the absence of a cell wall synthesis machinery. In this study, we undertook a comparative analysis of FtsZ and FtsA protein sequences from 113 mycoplasma species and the corresponding sequences in cell-walled bacteria. We report a phylogenetically distinct group of 12 species that possess a putative membrane binding amphipathic helix at either the N- or C-terminal extensions of the globular FtsZ domain. Importantly, these FtsZs lack conservation of the conserved C-terminal peptide sequence. We experimentally prove that the proposed C-terminal amphipathic helix in Mycoplasma genitalium (M. genitalium) FtsZ exhibits membrane binding. Additionally, we identify a potential cholesterol recognition motif within the C-terminal amphipathic helix region of M. genitalium FtsZ. Our study catalogues the functional variations of membrane attachment by the FtsZ and FtsA system in cell wall-less mycoplasmas and provides a new perspective to dissect the role of FtsZ and FtsA in cell division.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信