Tae-Eun Kwon, Sukyung Sung, Augustine Yonghwi Kim, Byung-Hoo Lee
{"title":"Flavor biotransformation of “Uiseong” garlic during the fermentation process by lactic acid bacteria","authors":"Tae-Eun Kwon, Sukyung Sung, Augustine Yonghwi Kim, Byung-Hoo Lee","doi":"10.1007/s10068-025-01820-3","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the biotransformation of Uiseong garlic, a South Korean variety renowned for its distinct sulfur compounds, by lactic acid bacteria (LAB) during kimchi fermentation. Using GC–MS, 26 volatile compounds, including 3-vinyl-1,2-dithiocyclohex-4-ene and 3-vinyl-1,2-dithiocyclohex-5-ene, were identified in garlic extracts. Four LAB strains active in early-stage kimchi fermentation degraded primary sulfur compounds and produced unique metabolites, such as pyrazine and allyl methyl disulfide. These biotransformed compounds reduced garlic’s pungency while enhancing savory and umami flavors, creating a balanced and complex sensory profile. Strain-specific differences and fermentation conditions, especially temperature, significantly influenced flavor development. The findings underscore Uiseong garlic’s pivotal role in flavor modulation and its potential for consistent quality in commercial kimchi production. This research can be applied to flavor transformation mechanisms and supports precision fermentation strategies to optimize sensory profiles and meet consumer preferences.</p></div>","PeriodicalId":566,"journal":{"name":"Food Science and Biotechnology","volume":"34 9","pages":"2005 - 2010"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science and Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s10068-025-01820-3","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the biotransformation of Uiseong garlic, a South Korean variety renowned for its distinct sulfur compounds, by lactic acid bacteria (LAB) during kimchi fermentation. Using GC–MS, 26 volatile compounds, including 3-vinyl-1,2-dithiocyclohex-4-ene and 3-vinyl-1,2-dithiocyclohex-5-ene, were identified in garlic extracts. Four LAB strains active in early-stage kimchi fermentation degraded primary sulfur compounds and produced unique metabolites, such as pyrazine and allyl methyl disulfide. These biotransformed compounds reduced garlic’s pungency while enhancing savory and umami flavors, creating a balanced and complex sensory profile. Strain-specific differences and fermentation conditions, especially temperature, significantly influenced flavor development. The findings underscore Uiseong garlic’s pivotal role in flavor modulation and its potential for consistent quality in commercial kimchi production. This research can be applied to flavor transformation mechanisms and supports precision fermentation strategies to optimize sensory profiles and meet consumer preferences.
期刊介绍:
The FSB journal covers food chemistry and analysis for compositional and physiological activity changes, food hygiene and toxicology, food microbiology and biotechnology, and food engineering involved in during and after food processing through physical, chemical, and biological ways. Consumer perception and sensory evaluation on processed foods are accepted only when they are relevant to the laboratory research work. As a general rule, manuscripts dealing with analysis and efficacy of extracts from natural resources prior to the processing or without any related food processing may not be considered within the scope of the journal. The FSB journal does not deal with only local interest and a lack of significant scientific merit. The main scope of our journal is seeking for human health and wellness through constructive works and new findings in food science and biotechnology field.