{"title":"Efficient one-pot radiosynthesis of the 11C-labeled aquaporin-4 inhibitor TGN-020","authors":"Kazunori Kawamura, Katsushi Kumata, Tomoteru Yamasaki, Masanao Ogawa, Yusuke Kurihara, Nobuki Nengaki, Yukimi Nakamura, Maiko Ono, Yuhei Takado, Hironaka Igarashi, Ming-Rong Zhang","doi":"10.1186/s41181-025-00338-7","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>[<sup>11</sup>C]TGN-020 has been developed as a positron emission tomography (PET) tracer for imaging aquaporin-4 (AQP4) in the brain and used in clinical studies. Previously, [<sup>11</sup>C]TGN-020 was synthesized through the acylation of [<sup>11</sup>C]nicotinic acid, produced by the reaction of 3-bromopyridine and <i>n</i>-butyllithium with [<sup>11</sup>C]CO<sub>2</sub>, with 2-amino-1,3,4-thiadiazole. In this study, to enhance the automated radiosynthesis efficiency of [<sup>11</sup>C]TGN-020, we optimized its radiosynthesis procedure using our in-house developed <sup>11</sup>C-labeling synthesizer.</p><h3>Results</h3><p>[<sup>11</sup>C]TGN-020 was synthesized via direct [<sup>11</sup>C]CO<sub>2</sub> fixation using <i>n</i>-butyllithium and 3-bromopyridine in tetrahydrofuran, followed by treatment of lithium [<sup>11</sup>C]nicotinic acetate with isobutyl chloroformate and subsequent acylation with 2-amino-1,3,4-thiadiazole in the presence of <i>N</i>,<i>N</i>-diisopropylethylamine. The optimized process significantly improved the radiosynthesis efficiency of [<sup>11</sup>C]TGN-020, achieving a high radiochemical yield based on [<sup>11</sup>C]CO<sub>2</sub> (610‒1700 MBq, 2.8 ± 0.7%) at the end of synthesis (<i>n</i> = 12) and molar activity (<i>A</i><sub>m</sub>) of 160–360 GBq/μmol at the end of synthesis (<i>n</i> = 5). The radiosynthesis time and radiochemical purity were approximately 60 min and > 95% (<i>n</i> = 12), respectively. PET studies based on [<sup>11</sup>C]TGN-020 with different <i>A</i><sub>m</sub> values were performed using healthy rats. The radioactive uptake of [<sup>11</sup>C]TGN-020 with high <i>A</i><sub>m</sub> in the cerebral cortex was slightly higher than that with low <i>A</i><sub>m</sub>.</p><h3>Conclusions</h3><p>[<sup>11</sup>C]TGN-020 with high <i>A</i><sub>m</sub> was obtained in reproducible radiochemical yield. Overall, the proposed optimization process for the radiosynthesis of [<sup>11</sup>C]TGN-020 can facilitate its application as a PET radiopharmaceutical for clinical use.</p></div>","PeriodicalId":534,"journal":{"name":"EJNMMI Radiopharmacy and Chemistry","volume":"10 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ejnmmipharmchem.springeropen.com/counter/pdf/10.1186/s41181-025-00338-7","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Radiopharmacy and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s41181-025-00338-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Background
[11C]TGN-020 has been developed as a positron emission tomography (PET) tracer for imaging aquaporin-4 (AQP4) in the brain and used in clinical studies. Previously, [11C]TGN-020 was synthesized through the acylation of [11C]nicotinic acid, produced by the reaction of 3-bromopyridine and n-butyllithium with [11C]CO2, with 2-amino-1,3,4-thiadiazole. In this study, to enhance the automated radiosynthesis efficiency of [11C]TGN-020, we optimized its radiosynthesis procedure using our in-house developed 11C-labeling synthesizer.
Results
[11C]TGN-020 was synthesized via direct [11C]CO2 fixation using n-butyllithium and 3-bromopyridine in tetrahydrofuran, followed by treatment of lithium [11C]nicotinic acetate with isobutyl chloroformate and subsequent acylation with 2-amino-1,3,4-thiadiazole in the presence of N,N-diisopropylethylamine. The optimized process significantly improved the radiosynthesis efficiency of [11C]TGN-020, achieving a high radiochemical yield based on [11C]CO2 (610‒1700 MBq, 2.8 ± 0.7%) at the end of synthesis (n = 12) and molar activity (Am) of 160–360 GBq/μmol at the end of synthesis (n = 5). The radiosynthesis time and radiochemical purity were approximately 60 min and > 95% (n = 12), respectively. PET studies based on [11C]TGN-020 with different Am values were performed using healthy rats. The radioactive uptake of [11C]TGN-020 with high Am in the cerebral cortex was slightly higher than that with low Am.
Conclusions
[11C]TGN-020 with high Am was obtained in reproducible radiochemical yield. Overall, the proposed optimization process for the radiosynthesis of [11C]TGN-020 can facilitate its application as a PET radiopharmaceutical for clinical use.