Development of a β-glucosidase improved for glucose retroinhibition for cellulosic ethanol production: an integrated bioinformatics and genetic engineering approach

IF 6.1 1区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Raíza dos Santos Azevedo, Hugo Santana, Vinícius Rosa Seus, Alex Dias Camargo, Adriano Velasque Werhli, Karina dos Santos Machado, Letícia Jungmann Cançado, Betania Ferraz Quirino, Luis Fernando Marins
{"title":"Development of a β-glucosidase improved for glucose retroinhibition for cellulosic ethanol production: an integrated bioinformatics and genetic engineering approach","authors":"Raíza dos Santos Azevedo,&nbsp;Hugo Santana,&nbsp;Vinícius Rosa Seus,&nbsp;Alex Dias Camargo,&nbsp;Adriano Velasque Werhli,&nbsp;Karina dos Santos Machado,&nbsp;Letícia Jungmann Cançado,&nbsp;Betania Ferraz Quirino,&nbsp;Luis Fernando Marins","doi":"10.1186/s13068-025-02643-4","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The global energy crisis, driven by economic growth and the increasing demand for energy, highlights the urgency of searching for alternative energy sources to mitigate environmental pollution and climate change. β-Glucosidases act in the final step of the enzymatic hydrolysis of cellulose, cleaving the β-1,4-glycosidic bonds in cellobiose to produce second-generation ethanol. However, these enzymes are easily inhibited by glucose, their final product, which limits the production of this biofuel. Genetic engineering combined with bioinformatics tools can improve key enzymatic characteristics, such as catalytic activity and glucose tolerance, in a more precise, faster, and cost-effective manner compared to traditional methods. In this work, a variant of a β-glucosidase from the GH1 family, isolated from the microbial community of Amazonian soil (Brazil), with enhanced catalytic activity and improved for glucose retroinhibition, was developed.</p><h3>Results</h3><p>Bioinformatics analyses suggested the substitution of tryptophan at position 404 with leucine. The produced variant (W404L) was expressed in <i>Escherichia coli</i> and showed activity 3.2 times higher in the presence of glucose than the non-mutated control. Moreover, the partially purified mutated variant of β-glucosidase exhibited a 26-fold increase in catalytic activity compared to the original form of the enzyme. The results confirmed that the mutation proposed by computational analyses had a significant impact on enzyme catalytic activity and glucose retroinhibition.</p><h3>Conclusions</h3><p>This new variant may become a promising alternative to reduce the costs of enzyme cocktails used in the hydrolysis of lignocellulosic biomass used as a raw material in the production of second-generation ethanol.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"18 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-025-02643-4","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-025-02643-4","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

The global energy crisis, driven by economic growth and the increasing demand for energy, highlights the urgency of searching for alternative energy sources to mitigate environmental pollution and climate change. β-Glucosidases act in the final step of the enzymatic hydrolysis of cellulose, cleaving the β-1,4-glycosidic bonds in cellobiose to produce second-generation ethanol. However, these enzymes are easily inhibited by glucose, their final product, which limits the production of this biofuel. Genetic engineering combined with bioinformatics tools can improve key enzymatic characteristics, such as catalytic activity and glucose tolerance, in a more precise, faster, and cost-effective manner compared to traditional methods. In this work, a variant of a β-glucosidase from the GH1 family, isolated from the microbial community of Amazonian soil (Brazil), with enhanced catalytic activity and improved for glucose retroinhibition, was developed.

Results

Bioinformatics analyses suggested the substitution of tryptophan at position 404 with leucine. The produced variant (W404L) was expressed in Escherichia coli and showed activity 3.2 times higher in the presence of glucose than the non-mutated control. Moreover, the partially purified mutated variant of β-glucosidase exhibited a 26-fold increase in catalytic activity compared to the original form of the enzyme. The results confirmed that the mutation proposed by computational analyses had a significant impact on enzyme catalytic activity and glucose retroinhibition.

Conclusions

This new variant may become a promising alternative to reduce the costs of enzyme cocktails used in the hydrolysis of lignocellulosic biomass used as a raw material in the production of second-generation ethanol.

Graphical Abstract

用于纤维素乙醇生产葡萄糖逆转录抑制的β-葡萄糖苷酶的开发:综合生物信息学和基因工程方法
在经济增长和能源需求不断增长的推动下,全球能源危机凸显了寻找替代能源以减轻环境污染和气候变化的紧迫性。β-葡萄糖苷酶在纤维素酶解的最后一步起作用,切断纤维素二糖中的β-1,4-糖苷键,产生第二代乙醇。然而,这些酶很容易被它们的最终产物葡萄糖抑制,从而限制了这种生物燃料的生产。与传统方法相比,基因工程与生物信息学工具相结合,可以更精确、更快、更经济地改善酶的关键特性,如催化活性和葡萄糖耐量。在这项工作中,从亚马逊土壤(巴西)的微生物群落中分离出一种GH1家族的β-葡萄糖苷酶变体,具有增强的催化活性和改进的葡萄糖反转录抑制作用。结果生物信息学分析表明404位色氨酸被亮氨酸取代。产生的变异(W404L)在大肠杆菌中表达,在葡萄糖存在下的活性比未突变的对照高3.2倍。此外,部分纯化的β-葡萄糖苷酶突变体的催化活性比原始形式的酶提高了26倍。结果证实,计算分析提出的突变对酶催化活性和葡萄糖逆转录抑制有显著影响。结论该新变异可能成为降低鸡尾酒酶在第二代乙醇生产中用于木质纤维素生物质水解的成本的一种有希望的替代方法。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biotechnology for Biofuels
Biotechnology for Biofuels 工程技术-生物工程与应用微生物
自引率
0.00%
发文量
0
审稿时长
2.7 months
期刊介绍: Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass. Biotechnology for Biofuels focuses on the following areas: • Development of terrestrial plant feedstocks • Development of algal feedstocks • Biomass pretreatment, fractionation and extraction for biological conversion • Enzyme engineering, production and analysis • Bacterial genetics, physiology and metabolic engineering • Fungal/yeast genetics, physiology and metabolic engineering • Fermentation, biocatalytic conversion and reaction dynamics • Biological production of chemicals and bioproducts from biomass • Anaerobic digestion, biohydrogen and bioelectricity • Bioprocess integration, techno-economic analysis, modelling and policy • Life cycle assessment and environmental impact analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信