{"title":"General geronimus perturbations for mixed multiple orthogonal polynomials","authors":"Manuel Mañas, Miguel Rojas","doi":"10.1007/s13324-025-01036-y","DOIUrl":null,"url":null,"abstract":"<div><p>General Geronimus transformations, defined by regular matrix polynomials that are neither required to be monic nor restricted by the rank of their leading coefficients, are applied through both right and left multiplication to a rectangular matrix of measures associated with mixed multiple orthogonal polynomials. These transformations produce Christoffel-type formulas that establish relationships between the perturbed and original polynomials. Moreover, it is proven that the existence of Geronimus-perturbed orthogonality is equivalent to the non-cancellation of certain <span>\\(\\tau \\)</span>-determinants. The effect of these transformations on the Markov–Stieltjes matrix functions is also determined. As a case study, we examine the Jacobi–Piñeiro orthogonal polynomials with three weights.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01036-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
General Geronimus transformations, defined by regular matrix polynomials that are neither required to be monic nor restricted by the rank of their leading coefficients, are applied through both right and left multiplication to a rectangular matrix of measures associated with mixed multiple orthogonal polynomials. These transformations produce Christoffel-type formulas that establish relationships between the perturbed and original polynomials. Moreover, it is proven that the existence of Geronimus-perturbed orthogonality is equivalent to the non-cancellation of certain \(\tau \)-determinants. The effect of these transformations on the Markov–Stieltjes matrix functions is also determined. As a case study, we examine the Jacobi–Piñeiro orthogonal polynomials with three weights.
期刊介绍:
Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.