{"title":"Joint identification of groundwater contaminant sources: an improved optimization algorithm","authors":"Zheng Guo, Boyan Sun, Saiju Li, Tongqing Shen, Pengpeng Ding, Lei Zhu","doi":"10.1007/s10661-025-13971-1","DOIUrl":null,"url":null,"abstract":"<div><p>Rapid identification of contaminant source information is critical for solving sudden groundwater contamination events. This paper constructs a combined EnKF-SPSO algorithm based on the ensemble Kalman filter (EnKF) and survival particle swarm optimization (SPSO) algorithms to groundwater contamination source identification, which includes determining the location of the source, initial concentration, and emission time. The proposed hybrid architecture improves upon conventional single-algorithm approaches by decoupling the identification process into two stages. First, the EnKF searches for the contaminant source’s location, thereby reducing the search space. Next, the SPSO estimates the initial concentration and emission time within the reduced domain. This two-stage process effectively mitigates the curse of dimensionality often encountered in standalone optimization methods. We set up two solute transport scenarios with different numbers of contaminant sources to examine the effectiveness of the algorithm and compare it with the EnKF, particle swarm optimization (PSO), and SPSO algorithms. The results show that the EnKF-SPSO algorithm can identify the contaminant characteristics more accurately without falling into a local optimum, and the average relative error is less than 1%. In addition, the EnKF-SPSO algorithm, for cases with measurement errors, is highly reliable. The combined algorithm can provide technical support for groundwater contamination remediations, risk assessments, and liability determinations.</p></div>","PeriodicalId":544,"journal":{"name":"Environmental Monitoring and Assessment","volume":"197 5","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Monitoring and Assessment","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10661-025-13971-1","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Rapid identification of contaminant source information is critical for solving sudden groundwater contamination events. This paper constructs a combined EnKF-SPSO algorithm based on the ensemble Kalman filter (EnKF) and survival particle swarm optimization (SPSO) algorithms to groundwater contamination source identification, which includes determining the location of the source, initial concentration, and emission time. The proposed hybrid architecture improves upon conventional single-algorithm approaches by decoupling the identification process into two stages. First, the EnKF searches for the contaminant source’s location, thereby reducing the search space. Next, the SPSO estimates the initial concentration and emission time within the reduced domain. This two-stage process effectively mitigates the curse of dimensionality often encountered in standalone optimization methods. We set up two solute transport scenarios with different numbers of contaminant sources to examine the effectiveness of the algorithm and compare it with the EnKF, particle swarm optimization (PSO), and SPSO algorithms. The results show that the EnKF-SPSO algorithm can identify the contaminant characteristics more accurately without falling into a local optimum, and the average relative error is less than 1%. In addition, the EnKF-SPSO algorithm, for cases with measurement errors, is highly reliable. The combined algorithm can provide technical support for groundwater contamination remediations, risk assessments, and liability determinations.
期刊介绍:
Environmental Monitoring and Assessment emphasizes technical developments and data arising from environmental monitoring and assessment, the use of scientific principles in the design of monitoring systems at the local, regional and global scales, and the use of monitoring data in assessing the consequences of natural resource management actions and pollution risks to man and the environment.