iTRAQ-based quantitative proteomics reveals dysregulation of fibronectin 1 contributes to impaired endometrial decidualization in recurrent implantation failure

IF 2.8 2区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Jingying Wang , Xuehan Zhao , Jiaqi Wu , Cong Wang , Qin Wang , Ying Fang , Xiaokui Yang
{"title":"iTRAQ-based quantitative proteomics reveals dysregulation of fibronectin 1 contributes to impaired endometrial decidualization in recurrent implantation failure","authors":"Jingying Wang ,&nbsp;Xuehan Zhao ,&nbsp;Jiaqi Wu ,&nbsp;Cong Wang ,&nbsp;Qin Wang ,&nbsp;Ying Fang ,&nbsp;Xiaokui Yang","doi":"10.1016/j.jprot.2025.105437","DOIUrl":null,"url":null,"abstract":"<div><div>Recurrent implantation failure (RIF) poses challenges to successful embryo implantation. In this study, we utilized isobaric tags for relative and absolute quantification (iTRAQ) to profile endometrial protein abundance in RIF patients. Through functional and pathway analyses, ECM-related proteins including fibronectin 1 (FN1), collagen type I alpha 2 chain (COL1A2), and integrin beta-1 (ITGB1) were revealed to be associated with RIF. Correlation analysis identified TGF-β1 as an upstream regulator of FN1. Knockdown experiments showed TGF-β1 downregulation could inhibit FN1 expression to inhibit decidualization markers. Our findings suggest a mechanistic link between TGF-β1/FN1 axis dysregulation and impaired decidualization observed in RIF.</div></div><div><h3>Significance</h3><div>Our study addresses the pressing issue of RIF, a significant obstacle in assisted reproductive technology. By employing isobaric tags for relative and absolute quantification (iTRAQ), we comprehensively analyzed endometrial protein abundance in RIF patients. Through functional and pathway enrichment analyses, we identified dysregulation in extracellular matrix (ECM)-related proteins, including FN1, COL1A2, and ITGB1, shedding light on their potential roles in implantation failure. Additionally, our correlation analysis revealed TGF-β1 as an upstream regulator of FN1, suggesting a novel regulatory axis involved in decidualization. Knockdown experiments further demonstrated the impact of TGF-β1 and FN1 on decidualization markers. This study contributes to a better understanding of the molecular mechanisms underlying RIF.</div></div>","PeriodicalId":16891,"journal":{"name":"Journal of proteomics","volume":"316 ","pages":"Article 105437"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874391925000648","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Recurrent implantation failure (RIF) poses challenges to successful embryo implantation. In this study, we utilized isobaric tags for relative and absolute quantification (iTRAQ) to profile endometrial protein abundance in RIF patients. Through functional and pathway analyses, ECM-related proteins including fibronectin 1 (FN1), collagen type I alpha 2 chain (COL1A2), and integrin beta-1 (ITGB1) were revealed to be associated with RIF. Correlation analysis identified TGF-β1 as an upstream regulator of FN1. Knockdown experiments showed TGF-β1 downregulation could inhibit FN1 expression to inhibit decidualization markers. Our findings suggest a mechanistic link between TGF-β1/FN1 axis dysregulation and impaired decidualization observed in RIF.

Significance

Our study addresses the pressing issue of RIF, a significant obstacle in assisted reproductive technology. By employing isobaric tags for relative and absolute quantification (iTRAQ), we comprehensively analyzed endometrial protein abundance in RIF patients. Through functional and pathway enrichment analyses, we identified dysregulation in extracellular matrix (ECM)-related proteins, including FN1, COL1A2, and ITGB1, shedding light on their potential roles in implantation failure. Additionally, our correlation analysis revealed TGF-β1 as an upstream regulator of FN1, suggesting a novel regulatory axis involved in decidualization. Knockdown experiments further demonstrated the impact of TGF-β1 and FN1 on decidualization markers. This study contributes to a better understanding of the molecular mechanisms underlying RIF.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of proteomics
Journal of proteomics 生物-生化研究方法
CiteScore
7.10
自引率
3.00%
发文量
227
审稿时长
73 days
期刊介绍: Journal of Proteomics is aimed at protein scientists and analytical chemists in the field of proteomics, biomarker discovery, protein analytics, plant proteomics, microbial and animal proteomics, human studies, tissue imaging by mass spectrometry, non-conventional and non-model organism proteomics, and protein bioinformatics. The journal welcomes papers in new and upcoming areas such as metabolomics, genomics, systems biology, toxicogenomics, pharmacoproteomics. Journal of Proteomics unifies both fundamental scientists and clinicians, and includes translational research. Suggestions for reviews, webinars and thematic issues are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信