Ana Belen Diaz-Ruano , Eliana Gomez-Jimenez , Gloria Llamas-Jimenez , Arena Ramirez-Muñoz , Pablo Espejo-Hijano , Alfonso Rubio-Navarro , Manuel Picon-Ruiz
{"title":"Advances in the use of nanoparticles for specific cell-target delivery of anti-cancer agents","authors":"Ana Belen Diaz-Ruano , Eliana Gomez-Jimenez , Gloria Llamas-Jimenez , Arena Ramirez-Muñoz , Pablo Espejo-Hijano , Alfonso Rubio-Navarro , Manuel Picon-Ruiz","doi":"10.1016/j.lfs.2025.123604","DOIUrl":null,"url":null,"abstract":"<div><div>In recent decades, cancer has emerged as one of the leading causes of death in developed countries. To revert this progression, scientists have focused on the design of new strategies for early detection of this disease and the development of more effective treatments for its eradication. Regarding the latter, one of the main research efforts has been directed toward designing more specific delivery systems for the administration of anti-tumoral agents. In this sense, the efficacy of conventional therapies used for cancer treatment, such as chemotherapy, immune checkpoint inhibitors and radiation therapy, are often limited by their lack of specificity and their potential to cause adverse secondary effects on healthy tissues. Therefore, designing specific cell-targeted delivery systems for anti-tumoral agents presents a promising approach to overcoming the limitations of conventional cancer therapies. In this review we summarize the advances in the use of nanoparticles for Specific Cell-Target Delivery of anti-tumoral agents from in vitro to clinical studies.</div></div>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":"371 ","pages":"Article 123604"},"PeriodicalIF":5.2000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024320525002383","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
In recent decades, cancer has emerged as one of the leading causes of death in developed countries. To revert this progression, scientists have focused on the design of new strategies for early detection of this disease and the development of more effective treatments for its eradication. Regarding the latter, one of the main research efforts has been directed toward designing more specific delivery systems for the administration of anti-tumoral agents. In this sense, the efficacy of conventional therapies used for cancer treatment, such as chemotherapy, immune checkpoint inhibitors and radiation therapy, are often limited by their lack of specificity and their potential to cause adverse secondary effects on healthy tissues. Therefore, designing specific cell-targeted delivery systems for anti-tumoral agents presents a promising approach to overcoming the limitations of conventional cancer therapies. In this review we summarize the advances in the use of nanoparticles for Specific Cell-Target Delivery of anti-tumoral agents from in vitro to clinical studies.
期刊介绍:
Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed.
The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.