Aleksandar Ichkov;Alexander Wietfeld;Marina Petrova;Ljiljana Simić
{"title":"HBF MU-MIMO With Interference-Aware Beam Pair Link Allocation for Beyond-5G mm-Wave Networks","authors":"Aleksandar Ichkov;Alexander Wietfeld;Marina Petrova;Ljiljana Simić","doi":"10.1109/TMC.2025.3526547","DOIUrl":null,"url":null,"abstract":"Hybrid beamforming (HBF) multi-user multiple-input multiple-output (MU-MIMO) is a key technology for unlocking the directional millimeter-wave (mm-wave) nature for spatial multiplexing beyond current codebook-based 5G-NR networks. In order to suppress co-scheduled users’ interference, HBF MU-MIMO is predicated on having sufficient radio frequency chains and accurate channel state information (CSI), which can otherwise lead to performance losses due to imperfect interference cancellation. In this work, we propose <italic>IABA</i>, a 5G-NR standard-compliant beam pair link (BPL) allocation scheme for mitigating spatial interference in practical HBF MU-MIMO networks. <italic>IABA</i> solves the network sum throughput optimization via either a <italic>distributed</i> or a <italic>centralized</i> BPL allocation using dedicated CSI reference signals for candidate BPL monitoring. We present a comprehensive study of practical multi-cell mm-wave networks and demonstrate that HBF MU-MIMO without interference-aware BPL allocation experiences strong residual interference which limits the achievable network performance. Our results show that <italic>IABA</i> offers significant performance gains over the default interference-agnostic 5G-NR BPL allocation, and even allows HBF MU-MIMO to outperform the fully digital MU-MIMO baseline, by facilitating allocation of secondary BPLs other than the strongest BPL found during initial access. We further demonstrate the scalability of <italic>IABA</i> with increased gNB antennas and densification for beyond-5G mm-wave networks.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 5","pages":"4248-4262"},"PeriodicalIF":7.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10829709/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Hybrid beamforming (HBF) multi-user multiple-input multiple-output (MU-MIMO) is a key technology for unlocking the directional millimeter-wave (mm-wave) nature for spatial multiplexing beyond current codebook-based 5G-NR networks. In order to suppress co-scheduled users’ interference, HBF MU-MIMO is predicated on having sufficient radio frequency chains and accurate channel state information (CSI), which can otherwise lead to performance losses due to imperfect interference cancellation. In this work, we propose IABA, a 5G-NR standard-compliant beam pair link (BPL) allocation scheme for mitigating spatial interference in practical HBF MU-MIMO networks. IABA solves the network sum throughput optimization via either a distributed or a centralized BPL allocation using dedicated CSI reference signals for candidate BPL monitoring. We present a comprehensive study of practical multi-cell mm-wave networks and demonstrate that HBF MU-MIMO without interference-aware BPL allocation experiences strong residual interference which limits the achievable network performance. Our results show that IABA offers significant performance gains over the default interference-agnostic 5G-NR BPL allocation, and even allows HBF MU-MIMO to outperform the fully digital MU-MIMO baseline, by facilitating allocation of secondary BPLs other than the strongest BPL found during initial access. We further demonstrate the scalability of IABA with increased gNB antennas and densification for beyond-5G mm-wave networks.
期刊介绍:
IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.