{"title":"An alignment-free secure fingerprint authentication integrated with elliptic curve signcryption scheme","authors":"Jignesh Kukadiya , Mulagala Sandhya , Dilip Kumar Vallabhadas , I HHNTV Prasad , Rithvik Mooda","doi":"10.1016/j.jisa.2025.104049","DOIUrl":null,"url":null,"abstract":"<div><div>Fingerprint authentication is a widely used method to verify someone’s identity by analysing unique fingerprint features, such as ridges and specific points called minutiae. However, there are concerns about its vulnerability to fake fingerprints and privacy issues. Cancellable biometrics is a promising solution to tackle these concerns. It transforms fingerprint features into secure forms that cannot be reversed back to the original, even if someone gets hold of them. This paper proposes an alignment-free secure fingerprint authentication method that integrates minutiae point descriptors and Scale Invariant Feature Transform (SIFT) keypoint descriptors, enhanced with Elliptic Curve signcryption, aiming to fortify security without compromising authentication accuracy. Experimental evaluations were conducted using the Fingerprint Verification Competition (FVC) 2002 dataset, showcasing the efficacy of the proposed approach. Experimental results demonstrate a significant reduction in security risks while upholding authentication accuracy, thus affirming the effectiveness of our methodology in enhancing fingerprint authentication security.</div></div>","PeriodicalId":48638,"journal":{"name":"Journal of Information Security and Applications","volume":"90 ","pages":"Article 104049"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Security and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214212625000869","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Fingerprint authentication is a widely used method to verify someone’s identity by analysing unique fingerprint features, such as ridges and specific points called minutiae. However, there are concerns about its vulnerability to fake fingerprints and privacy issues. Cancellable biometrics is a promising solution to tackle these concerns. It transforms fingerprint features into secure forms that cannot be reversed back to the original, even if someone gets hold of them. This paper proposes an alignment-free secure fingerprint authentication method that integrates minutiae point descriptors and Scale Invariant Feature Transform (SIFT) keypoint descriptors, enhanced with Elliptic Curve signcryption, aiming to fortify security without compromising authentication accuracy. Experimental evaluations were conducted using the Fingerprint Verification Competition (FVC) 2002 dataset, showcasing the efficacy of the proposed approach. Experimental results demonstrate a significant reduction in security risks while upholding authentication accuracy, thus affirming the effectiveness of our methodology in enhancing fingerprint authentication security.
期刊介绍:
Journal of Information Security and Applications (JISA) focuses on the original research and practice-driven applications with relevance to information security and applications. JISA provides a common linkage between a vibrant scientific and research community and industry professionals by offering a clear view on modern problems and challenges in information security, as well as identifying promising scientific and "best-practice" solutions. JISA issues offer a balance between original research work and innovative industrial approaches by internationally renowned information security experts and researchers.