{"title":"Diffusion-Based Visual Art Creation: A Survey and New Perspectives","authors":"Bingyuan Wang, Qifeng Chen, Zeyu Wang","doi":"10.1145/3728459","DOIUrl":null,"url":null,"abstract":"The integration of generative AI in visual art has revolutionized not only how visual content is created but also how AI interacts with and reflects the underlying domain knowledge. This survey explores the emerging realm of diffusion-based visual art creation, examining its development from both artistic and technical perspectives. We structure the survey into three phases, data feature and framework identification, detailed analyses using a structured coding process, and open-ended prospective outlooks. Our findings reveal how artistic requirements are transformed into technical challenges and highlight the design and application of diffusion-based methods within visual art creation. We also provide insights into future directions from technical and synergistic perspectives, suggesting that the confluence of generative AI and art has shifted the creative paradigm and opened up new possibilities. By summarizing the development and trends of this emerging interdisciplinary area, we aim to shed light on the mechanisms through which AI systems emulate and possibly, enhance human capacities in artistic perception and creativity.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"290 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3728459","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of generative AI in visual art has revolutionized not only how visual content is created but also how AI interacts with and reflects the underlying domain knowledge. This survey explores the emerging realm of diffusion-based visual art creation, examining its development from both artistic and technical perspectives. We structure the survey into three phases, data feature and framework identification, detailed analyses using a structured coding process, and open-ended prospective outlooks. Our findings reveal how artistic requirements are transformed into technical challenges and highlight the design and application of diffusion-based methods within visual art creation. We also provide insights into future directions from technical and synergistic perspectives, suggesting that the confluence of generative AI and art has shifted the creative paradigm and opened up new possibilities. By summarizing the development and trends of this emerging interdisciplinary area, we aim to shed light on the mechanisms through which AI systems emulate and possibly, enhance human capacities in artistic perception and creativity.
期刊介绍:
ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods.
ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.