Diffusion-Based Visual Art Creation: A Survey and New Perspectives

IF 23.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Bingyuan Wang, Qifeng Chen, Zeyu Wang
{"title":"Diffusion-Based Visual Art Creation: A Survey and New Perspectives","authors":"Bingyuan Wang, Qifeng Chen, Zeyu Wang","doi":"10.1145/3728459","DOIUrl":null,"url":null,"abstract":"The integration of generative AI in visual art has revolutionized not only how visual content is created but also how AI interacts with and reflects the underlying domain knowledge. This survey explores the emerging realm of diffusion-based visual art creation, examining its development from both artistic and technical perspectives. We structure the survey into three phases, data feature and framework identification, detailed analyses using a structured coding process, and open-ended prospective outlooks. Our findings reveal how artistic requirements are transformed into technical challenges and highlight the design and application of diffusion-based methods within visual art creation. We also provide insights into future directions from technical and synergistic perspectives, suggesting that the confluence of generative AI and art has shifted the creative paradigm and opened up new possibilities. By summarizing the development and trends of this emerging interdisciplinary area, we aim to shed light on the mechanisms through which AI systems emulate and possibly, enhance human capacities in artistic perception and creativity.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"290 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3728459","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of generative AI in visual art has revolutionized not only how visual content is created but also how AI interacts with and reflects the underlying domain knowledge. This survey explores the emerging realm of diffusion-based visual art creation, examining its development from both artistic and technical perspectives. We structure the survey into three phases, data feature and framework identification, detailed analyses using a structured coding process, and open-ended prospective outlooks. Our findings reveal how artistic requirements are transformed into technical challenges and highlight the design and application of diffusion-based methods within visual art creation. We also provide insights into future directions from technical and synergistic perspectives, suggesting that the confluence of generative AI and art has shifted the creative paradigm and opened up new possibilities. By summarizing the development and trends of this emerging interdisciplinary area, we aim to shed light on the mechanisms through which AI systems emulate and possibly, enhance human capacities in artistic perception and creativity.
生成式人工智能与视觉艺术的结合不仅彻底改变了视觉内容的创作方式,也改变了人工智能与底层领域知识的互动和反映方式。本调查探讨了基于扩散的视觉艺术创作这一新兴领域,从艺术和技术两个角度考察了其发展情况。我们将调查分为三个阶段:数据特征和框架识别、使用结构化编码流程进行详细分析以及开放式前景展望。我们的研究结果揭示了艺术需求是如何转化为技术挑战的,并强调了基于扩散的方法在视觉艺术创作中的设计和应用。我们还从技术和协同的角度对未来的发展方向提出了见解,认为生成式人工智能与艺术的融合改变了创作范式,开辟了新的可能性。通过总结这一新兴跨学科领域的发展和趋势,我们旨在阐明人工智能系统模拟并可能提高人类艺术感知和创造能力的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Computing Surveys
ACM Computing Surveys 工程技术-计算机:理论方法
CiteScore
33.20
自引率
0.60%
发文量
372
审稿时长
12 months
期刊介绍: ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods. ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信