Automated Detection of Media Bias Using Artificial Intelligence and Natural Language Processing: A Systematic Review

IF 3 2区 社会学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Mar Castillo-Campos, David Becerra-Alonso, Hajo G. Boomgaarden
{"title":"Automated Detection of Media Bias Using Artificial Intelligence and Natural Language Processing: A Systematic Review","authors":"Mar Castillo-Campos, David Becerra-Alonso, Hajo G. Boomgaarden","doi":"10.1177/08944393251331510","DOIUrl":null,"url":null,"abstract":"Media bias has long been a subject of scholarly interest due to its potential to shape public perceptions and behaviors. This systematic review leverages advances in natural language processing (NLP) to explore automated methods to detect media bias, addressing five core questions: it examines the definitions and operationalization of media bias, explores the NLP tasks addressed for its detection, the technologies used, and their respective outcomes and applied findings. This review also examines the practical applications of these methodologies and assesses the patterns, implications, and limitations associated with using artificial intelligence for media bias detection. Analyzing peer-reviewed articles from 2019 to 2023, the review initially identified 519 articles, which ultimately included 28 relevant ones. Significant heterogeneity is observed in bias definitions, affecting the analysis and detection approaches. The review highlights the predominant use of some methods and identifies challenges such as inconsistencies in problem definition, outcome measurement, and comparative method evaluation. Regardless of the conceptualizations of bias and the methods used, studies consistently identify bias in media outlets. Thus, studying media bias remains necessary for raising awareness and detection, and NLP methods are significant allies in this endeavor. This research aims to consolidate the foundations of recent advances in NLP for bias detection, encouraging researchers to focus on developing transparent, task-specific tools and work toward a consensus on a technical definition of bias and standardized metrics for its evaluation.","PeriodicalId":49509,"journal":{"name":"Social Science Computer Review","volume":"38 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Social Science Computer Review","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/08944393251331510","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Media bias has long been a subject of scholarly interest due to its potential to shape public perceptions and behaviors. This systematic review leverages advances in natural language processing (NLP) to explore automated methods to detect media bias, addressing five core questions: it examines the definitions and operationalization of media bias, explores the NLP tasks addressed for its detection, the technologies used, and their respective outcomes and applied findings. This review also examines the practical applications of these methodologies and assesses the patterns, implications, and limitations associated with using artificial intelligence for media bias detection. Analyzing peer-reviewed articles from 2019 to 2023, the review initially identified 519 articles, which ultimately included 28 relevant ones. Significant heterogeneity is observed in bias definitions, affecting the analysis and detection approaches. The review highlights the predominant use of some methods and identifies challenges such as inconsistencies in problem definition, outcome measurement, and comparative method evaluation. Regardless of the conceptualizations of bias and the methods used, studies consistently identify bias in media outlets. Thus, studying media bias remains necessary for raising awareness and detection, and NLP methods are significant allies in this endeavor. This research aims to consolidate the foundations of recent advances in NLP for bias detection, encouraging researchers to focus on developing transparent, task-specific tools and work toward a consensus on a technical definition of bias and standardized metrics for its evaluation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Social Science Computer Review
Social Science Computer Review 社会科学-计算机:跨学科应用
CiteScore
9.00
自引率
4.90%
发文量
95
审稿时长
>12 weeks
期刊介绍: Unique Scope Social Science Computer Review is an interdisciplinary journal covering social science instructional and research applications of computing, as well as societal impacts of informational technology. Topics included: artificial intelligence, business, computational social science theory, computer-assisted survey research, computer-based qualitative analysis, computer simulation, economic modeling, electronic modeling, electronic publishing, geographic information systems, instrumentation and research tools, public administration, social impacts of computing and telecommunications, software evaluation, world-wide web resources for social scientists. Interdisciplinary Nature Because the Uses and impacts of computing are interdisciplinary, so is Social Science Computer Review. The journal is of direct relevance to scholars and scientists in a wide variety of disciplines. In its pages you''ll find work in the following areas: sociology, anthropology, political science, economics, psychology, computer literacy, computer applications, and methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信