{"title":"Noninvasive early prediction of preeclampsia in pregnancy using retinal vascular features","authors":"Yuxuan Wu, Lixia Shen, Lanqin Zhao, Xiaohong Lin, Miaohong Xu, Zhenjun Tu, Yihong Huang, Lingyi Kong, Zhenzhe Lin, Duoru Lin, Lixue Liu, Xun Wang, Zizheng Cao, Xi Chen, Shengmei Zhou, Weiling Hu, Yunjian Huang, Shiyuan Chen, Meimei Dongye, Xulin Zhang, Dongni Wang, Danli Shi, Zilian Wang, Xiaohang Wu, Dongyu Wang, Haotian Lin","doi":"10.1038/s41746-025-01582-6","DOIUrl":null,"url":null,"abstract":"<p>Preeclampsia (PE), a severe hypertensive disorder during pregnancy, significantly contributes to maternal and neonatal mortality. Existing prediction biomarkers are often invasive and expensive, hindering their widespread application. This study introduces PROMPT (Preeclampsia Risk factor + Ophthalmic data + Mean arterial pressure Prediction Test), an AI-driven model leveraging retinal photography for PE prediction, registered at ChiCTR (ChiCTR2100049850) in August 2021. Analyzing 1812 pregnancies before 14 gestational weeks, we extracted retinal parameters using a deep learning system. The PROMPT achieved an AUC of 0.87 (0.83–0.90) for PE prediction and 0.91 (0.85–0.97) for preterm PE prediction using machine learning, significantly outperforming the baseline model (<i>p</i> < 0.001). It also improved detection of severe adverse pregnancy outcomes from 35% to 41%. Economically, PROMPT was estimated to avert 1809 PE cases and saved over $50 million per 100,000 screenings. These results position PROMPT as a non-invasive and cost-effective tool for prenatal care, especially valuable in low- and middle-income countries.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"37 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01582-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Preeclampsia (PE), a severe hypertensive disorder during pregnancy, significantly contributes to maternal and neonatal mortality. Existing prediction biomarkers are often invasive and expensive, hindering their widespread application. This study introduces PROMPT (Preeclampsia Risk factor + Ophthalmic data + Mean arterial pressure Prediction Test), an AI-driven model leveraging retinal photography for PE prediction, registered at ChiCTR (ChiCTR2100049850) in August 2021. Analyzing 1812 pregnancies before 14 gestational weeks, we extracted retinal parameters using a deep learning system. The PROMPT achieved an AUC of 0.87 (0.83–0.90) for PE prediction and 0.91 (0.85–0.97) for preterm PE prediction using machine learning, significantly outperforming the baseline model (p < 0.001). It also improved detection of severe adverse pregnancy outcomes from 35% to 41%. Economically, PROMPT was estimated to avert 1809 PE cases and saved over $50 million per 100,000 screenings. These results position PROMPT as a non-invasive and cost-effective tool for prenatal care, especially valuable in low- and middle-income countries.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.