Enabling FAIR data stewardship in complex international multi-site studies: Data Operations for the Accelerating Medicines Partnership® Schizophrenia Program.

IF 3 Q2 PSYCHIATRY
Tashrif Billah, Kang Ik K Cho, Owen Borders, Yoonho Chung, Michaela Ennis, Grace R Jacobs, Einat Liebenthal, Daniel H Mathalon, Dheshan Mohandass, Spero C Nicholas, Ofer Pasternak, Nora Penzel, Habiballah Rahimi Eichi, Phillip Wolff, Alan Anticevic, Kristen Laulette, Angela R Nunez, Zailyn Tamayo, Kate Buccilli, Beau-Luke Colton, Dominic B Dwyer, Larry Hendricks, Hok Pan Yuen, Jessica Spark, Sophie Tod, Holly Carrington, Justine T Chen, Michael J Coleman, Cheryl M Corcoran, Anastasia Haidar, Omar John, Sinead Kelly, Patricia J Marcy, Priya Matneja, Alessia McGowan, Susan E Ray, Simone Veale, Inge Winter-Van Rossum, Jean Addington, Kelly A Allott, Monica E Calkins, Scott R Clark, Ruben C Gur, Michael P Harms, Diana O Perkins, Kosha Ruparel, William S Stone, John Torous, Alison R Yung, Eirini Zoupou, Paolo Fusar-Poli, Vijay A Mittal, Jai L Shah, Daniel H Wolf, Guillermo Cecchi, Tina Kapur, Marek Kubicki, Kathryn Eve Lewandowski, Carrie E Bearden, Patrick D McGorry, René S Kahn, John M Kane, Barnaby Nelson, Scott W Woods, Martha E Shenton, Justin T Baker, Sylvain Bouix
{"title":"Enabling FAIR data stewardship in complex international multi-site studies: Data Operations for the Accelerating Medicines Partnership® Schizophrenia Program.","authors":"Tashrif Billah, Kang Ik K Cho, Owen Borders, Yoonho Chung, Michaela Ennis, Grace R Jacobs, Einat Liebenthal, Daniel H Mathalon, Dheshan Mohandass, Spero C Nicholas, Ofer Pasternak, Nora Penzel, Habiballah Rahimi Eichi, Phillip Wolff, Alan Anticevic, Kristen Laulette, Angela R Nunez, Zailyn Tamayo, Kate Buccilli, Beau-Luke Colton, Dominic B Dwyer, Larry Hendricks, Hok Pan Yuen, Jessica Spark, Sophie Tod, Holly Carrington, Justine T Chen, Michael J Coleman, Cheryl M Corcoran, Anastasia Haidar, Omar John, Sinead Kelly, Patricia J Marcy, Priya Matneja, Alessia McGowan, Susan E Ray, Simone Veale, Inge Winter-Van Rossum, Jean Addington, Kelly A Allott, Monica E Calkins, Scott R Clark, Ruben C Gur, Michael P Harms, Diana O Perkins, Kosha Ruparel, William S Stone, John Torous, Alison R Yung, Eirini Zoupou, Paolo Fusar-Poli, Vijay A Mittal, Jai L Shah, Daniel H Wolf, Guillermo Cecchi, Tina Kapur, Marek Kubicki, Kathryn Eve Lewandowski, Carrie E Bearden, Patrick D McGorry, René S Kahn, John M Kane, Barnaby Nelson, Scott W Woods, Martha E Shenton, Justin T Baker, Sylvain Bouix","doi":"10.1038/s41537-025-00560-x","DOIUrl":null,"url":null,"abstract":"<p><p>Modern research management, particularly for publicly funded studies, assumes a data governance model in which grantees are considered stewards rather than owners of important data sets. Thus, there is an expectation that collected data are shared as widely as possible with the general research community. This presents problems in complex studies that involve sensitive health information. The latter requires balancing participant privacy with the needs of the research community. Here, we report on the data operation ecosystem crafted for the Accelerating Medicines Partnership® Schizophrenia project, an international observational study of young individuals at clinical high risk for developing a psychotic disorder. We review data capture systems, data dictionaries, organization principles, data flow, security, quality control protocols, data visualization, monitoring, and dissemination through the NIMH Data Archive platform. We focus on the interconnectedness of these steps, where our goal is to design a seamless data flow and an alignment with the FAIR (Findability, Accessibility, Interoperability, and Reusability) principles while balancing local regulatory and ethical considerations. This process-oriented approach leverages automated pipelines for data flow to enhance data quality, speed, and collaboration, underscoring the project's contribution to advancing research practices involving multisite studies of sensitive mental health conditions. An important feature is the data's close-to-real-time quality assessment (QA) and quality control (QC). The focus on close-to-real-time QA/QC makes it possible for a subject to redo a testing session, as well as facilitate course corrections to prevent repeating errors in future data acquisition. Watch Dr. Sylvain Bouix discuss his work and this article: https://vimeo.com/1025555648 .</p>","PeriodicalId":74758,"journal":{"name":"Schizophrenia (Heidelberg, Germany)","volume":"11 1","pages":"55"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968805/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Schizophrenia (Heidelberg, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41537-025-00560-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

Abstract

Modern research management, particularly for publicly funded studies, assumes a data governance model in which grantees are considered stewards rather than owners of important data sets. Thus, there is an expectation that collected data are shared as widely as possible with the general research community. This presents problems in complex studies that involve sensitive health information. The latter requires balancing participant privacy with the needs of the research community. Here, we report on the data operation ecosystem crafted for the Accelerating Medicines Partnership® Schizophrenia project, an international observational study of young individuals at clinical high risk for developing a psychotic disorder. We review data capture systems, data dictionaries, organization principles, data flow, security, quality control protocols, data visualization, monitoring, and dissemination through the NIMH Data Archive platform. We focus on the interconnectedness of these steps, where our goal is to design a seamless data flow and an alignment with the FAIR (Findability, Accessibility, Interoperability, and Reusability) principles while balancing local regulatory and ethical considerations. This process-oriented approach leverages automated pipelines for data flow to enhance data quality, speed, and collaboration, underscoring the project's contribution to advancing research practices involving multisite studies of sensitive mental health conditions. An important feature is the data's close-to-real-time quality assessment (QA) and quality control (QC). The focus on close-to-real-time QA/QC makes it possible for a subject to redo a testing session, as well as facilitate course corrections to prevent repeating errors in future data acquisition. Watch Dr. Sylvain Bouix discuss his work and this article: https://vimeo.com/1025555648 .

在复杂的国际多地点研究中实现公平数据管理:加速药物伙伴关系®精神分裂症计划的数据操作。
现代研究管理,特别是公共资助的研究,假设了一种数据治理模型,在这种模型中,受资助者被视为重要数据集的管理者,而不是所有者。因此,人们期望收集到的数据尽可能广泛地与一般研究界共享。这在涉及敏感健康信息的复杂研究中提出了问题。后者需要平衡参与者的隐私与研究界的需求。在这里,我们报告了为加速药物伙伴关系®精神分裂症项目精心设计的数据操作生态系统,这是一项针对临床发展为精神障碍的高风险年轻人的国际观察性研究。我们回顾了数据捕获系统、数据字典、组织原则、数据流、安全性、质量控制协议、数据可视化、监测和通过NIMH数据存档平台的传播。我们关注这些步骤之间的相互联系,我们的目标是设计一个无缝的数据流,并与FAIR(可查找性、可访问性、互操作性和可重用性)原则保持一致,同时平衡当地监管和道德考虑。这种面向过程的方法利用数据流的自动化管道来提高数据质量、速度和协作,强调了该项目对推进涉及敏感心理健康状况多地点研究的研究实践的贡献。数据的一个重要特征是接近实时的质量评估(QA)和质量控制(QC)。专注于接近实时的QA/QC使测试对象可以重做测试会话,并促进过程修正,以防止在未来的数据采集中重复错误。观看Sylvain Bouix博士讨论他的工作和这篇文章:https://vimeo.com/1025555648。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信