Data analysis strategies for the Accelerating Medicines Partnership® Schizophrenia Program.

IF 3 Q2 PSYCHIATRY
Nora Penzel, Pablo Polosecki, Jean Addington, Celso Arango, Ameneh Asgari-Targhi, Tashrif Billah, Sylvain Bouix, Monica E Calkins, Dylan E Campbell, Tyrone D Cannon, Eduardo Castro, Kang Ik K Cho, Michael J Coleman, Cheryl M Corcoran, Dominic Dwyer, Sophia Frangou, Paolo Fusar-Poli, Robert J Glynn, Anastasia Haidar, Michael P Harms, Grace R Jacobs, Joseph Kambeitz, Tina Kapur, Sinead M Kelly, Nikolaos Koutsouleris, K R Abhinandan, Saryet Kucukemiroglu, Jun Soo Kwon, Kathryn E Lewandowski, Qingqin S Li, Valentina Mantua, Daniel H Mathalon, Vijay A Mittal, Spero Nicholas, Gahan J Pandina, Diana O Perkins, Andrew Potter, Abraham Reichenberg, Jenna Reinen, Michael S Sand, Johanna Seitz-Holland, Jai L Shah, Vairavan Srinivasan, Agrima Srivastava, William S Stone, John Torous, Mark G Vangel, Jijun Wang, Phillip Wolff, Beier Yao, Alan Anticevic, Daniel H Wolf, Hao Zhu, Carrie E Bearden, Patrick D McGorry, Barnaby Nelson, John M Kane, Scott W Woods, René S Kahn, Martha E Shenton, Guillermo Cecchi, Ofer Pasternak
{"title":"Data analysis strategies for the Accelerating Medicines Partnership® Schizophrenia Program.","authors":"Nora Penzel, Pablo Polosecki, Jean Addington, Celso Arango, Ameneh Asgari-Targhi, Tashrif Billah, Sylvain Bouix, Monica E Calkins, Dylan E Campbell, Tyrone D Cannon, Eduardo Castro, Kang Ik K Cho, Michael J Coleman, Cheryl M Corcoran, Dominic Dwyer, Sophia Frangou, Paolo Fusar-Poli, Robert J Glynn, Anastasia Haidar, Michael P Harms, Grace R Jacobs, Joseph Kambeitz, Tina Kapur, Sinead M Kelly, Nikolaos Koutsouleris, K R Abhinandan, Saryet Kucukemiroglu, Jun Soo Kwon, Kathryn E Lewandowski, Qingqin S Li, Valentina Mantua, Daniel H Mathalon, Vijay A Mittal, Spero Nicholas, Gahan J Pandina, Diana O Perkins, Andrew Potter, Abraham Reichenberg, Jenna Reinen, Michael S Sand, Johanna Seitz-Holland, Jai L Shah, Vairavan Srinivasan, Agrima Srivastava, William S Stone, John Torous, Mark G Vangel, Jijun Wang, Phillip Wolff, Beier Yao, Alan Anticevic, Daniel H Wolf, Hao Zhu, Carrie E Bearden, Patrick D McGorry, Barnaby Nelson, John M Kane, Scott W Woods, René S Kahn, Martha E Shenton, Guillermo Cecchi, Ofer Pasternak","doi":"10.1038/s41537-025-00561-w","DOIUrl":null,"url":null,"abstract":"<p><p>The Accelerating Medicines Partnership® Schizophrenia (AMP® SCZ) project assesses a large sample of individuals at clinical high-risk for developing psychosis (CHR) and community controls. Subjects are enrolled in 43 sites across 5 continents. The assessments include domains similar to those acquired in previous CHR studies along with novel domains that are collected longitudinally across a period of 2 years. In parallel with the data acquisition, multidisciplinary teams of experts have been working to formulate the data analysis strategy for the AMP SCZ project. Here, we describe the key principles for the data analysis. The primary AMP SCZ analysis aim is to use baseline clinical assessments and multimodal biomarkers to predict clinical endpoints of CHR individuals. These endpoints are defined for the AMP SCZ study as transition to psychosis (i.e., conversion), remission from CHR syndrome, and persistent CHR syndrome (non-conversion/non-remission) obtained at one year and two years after baseline assessment. The secondary aim is to use longitudinal clinical assessments and multimodal biomarkers from all time points to identify clinical trajectories that differentiate subgroups of CHR individuals. The design of the analysis plan is informed by reviewing legacy data and the analytic approaches from similar international CHR studies. In addition, we consider properties of the newly acquired data that are distinct from the available legacy data. Legacy data are used to assist analysis pipeline building, perform benchmark experiments, quantify clinical concepts and to make design decisions meant to overcome the challenges encountered in previous studies. We present the analytic design of the AMP SCZ project, mitigation strategies to address challenges related to the analysis plan, provide rationales for key decisions, and present examples of how the legacy data have been used to support design decisions for the analysis of the multimodal and longitudinal data. Watch Prof. Ofer Pasternak discuss his work and this article: https://vimeo.com/1023394132?share=copy#t=0 .</p>","PeriodicalId":74758,"journal":{"name":"Schizophrenia (Heidelberg, Germany)","volume":"11 1","pages":"53"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968818/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Schizophrenia (Heidelberg, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41537-025-00561-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

Abstract

The Accelerating Medicines Partnership® Schizophrenia (AMP® SCZ) project assesses a large sample of individuals at clinical high-risk for developing psychosis (CHR) and community controls. Subjects are enrolled in 43 sites across 5 continents. The assessments include domains similar to those acquired in previous CHR studies along with novel domains that are collected longitudinally across a period of 2 years. In parallel with the data acquisition, multidisciplinary teams of experts have been working to formulate the data analysis strategy for the AMP SCZ project. Here, we describe the key principles for the data analysis. The primary AMP SCZ analysis aim is to use baseline clinical assessments and multimodal biomarkers to predict clinical endpoints of CHR individuals. These endpoints are defined for the AMP SCZ study as transition to psychosis (i.e., conversion), remission from CHR syndrome, and persistent CHR syndrome (non-conversion/non-remission) obtained at one year and two years after baseline assessment. The secondary aim is to use longitudinal clinical assessments and multimodal biomarkers from all time points to identify clinical trajectories that differentiate subgroups of CHR individuals. The design of the analysis plan is informed by reviewing legacy data and the analytic approaches from similar international CHR studies. In addition, we consider properties of the newly acquired data that are distinct from the available legacy data. Legacy data are used to assist analysis pipeline building, perform benchmark experiments, quantify clinical concepts and to make design decisions meant to overcome the challenges encountered in previous studies. We present the analytic design of the AMP SCZ project, mitigation strategies to address challenges related to the analysis plan, provide rationales for key decisions, and present examples of how the legacy data have been used to support design decisions for the analysis of the multimodal and longitudinal data. Watch Prof. Ofer Pasternak discuss his work and this article: https://vimeo.com/1023394132?share=copy#t=0 .

加速药物伙伴关系®精神分裂症项目的数据分析策略。
加速药物合作伙伴®精神分裂症(AMP®SCZ)项目评估了大量临床高危精神病(CHR)和社区对照的个体样本。受试者在五大洲的43个地点注册。评估包括与以前CHR研究中获得的相似的域以及在2年期间纵向收集的新域。在数据采集的同时,多学科专家团队一直致力于为AMP SCZ项目制定数据分析策略。在这里,我们描述了数据分析的关键原则。AMP SCZ分析的主要目的是使用基线临床评估和多模式生物标志物来预测CHR个体的临床终点。AMP SCZ研究将这些终点定义为在基线评估后1年和2年获得的向精神病的过渡(即转化)、CHR综合征的缓解和持续性CHR综合征(非转化/非缓解)。第二个目标是使用纵向临床评估和来自所有时间点的多模式生物标志物来识别区分CHR个体亚组的临床轨迹。分析计划的设计是通过回顾遗留数据和类似国际CHR研究的分析方法来进行的。此外,我们还考虑新获得的数据的属性,这些属性与可用的遗留数据不同。遗留数据用于协助分析管道建设,执行基准实验,量化临床概念,并做出设计决策,以克服以前研究中遇到的挑战。我们介绍了AMP SCZ项目的分析设计,解决与分析计划相关的挑战的缓解策略,为关键决策提供了依据,并举例说明了如何使用遗留数据来支持多模态和纵向数据分析的设计决策。观看奥弗·帕斯捷尔纳克教授讨论他的工作和这篇文章:https://vimeo.com/1023394132?share=copy#t=0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信