Decreased mitochondrial NAD+ in WRN deficient cells links to dysfunctional proliferation.

IF 3.9 3区 医学 Q2 CELL BIOLOGY
Aging-Us Pub Date : 2025-04-02 DOI:10.18632/aging.206236
Sofie Lautrup, Shi-Qi Zhang, Shinichiro Funayama, Lisa Lirussi, Tina Visnovska, Hoi-Hung Cheung, Marc Niere, Yuyao Tian, Hilde Loge Nilsen, Geir Selbæk, Janna Saarela, Yoshiro Maezawa, Koutaro Yokote, Per Nilsson, Wai-Yee Chan, Hisaya Kato, Mathias Ziegler, Vilhelm A Bohr, Evandro F Fang
{"title":"Decreased mitochondrial NAD+ in WRN deficient cells links to dysfunctional proliferation.","authors":"Sofie Lautrup, Shi-Qi Zhang, Shinichiro Funayama, Lisa Lirussi, Tina Visnovska, Hoi-Hung Cheung, Marc Niere, Yuyao Tian, Hilde Loge Nilsen, Geir Selbæk, Janna Saarela, Yoshiro Maezawa, Koutaro Yokote, Per Nilsson, Wai-Yee Chan, Hisaya Kato, Mathias Ziegler, Vilhelm A Bohr, Evandro F Fang","doi":"10.18632/aging.206236","DOIUrl":null,"url":null,"abstract":"<p><p>Werner syndrome (WS), caused by mutations in the RecQ helicase WERNER (<i>WRN</i>) gene, is a classical accelerated aging disease with patients suffering from several metabolic dysfunctions without a cure. While, as we previously reported, depleted NAD<sup>+</sup> causes accumulation of damaged mitochondria, leading to compromised metabolism, how mitochondrial NAD<sup>+</sup> changes in WS and the impact on WS pathologies were unknown. We show that loss of WRN increases senescence in mesenchymal stem cells (MSCs) likely related to dysregulation of metabolic and aging pathways. In line with this, NAD<sup>+</sup> augmentation, via supplementation with nicotinamide riboside, reduces senescence and improves mitochondrial metabolic profiles in MSCs with <i>WRN</i> knockout (<i>WRN<sup>-/-</sup></i>) and in primary fibroblasts derived from WS patients compared to controls. Moreover, <i>WRN</i> deficiency results in decreased mitochondrial NAD<sup>+</sup> (measured indirectly via mitochondrially-expressed PARP activity), and altered expression of key salvage pathway enzymes, including NMNAT1 and NAMPT; ChIP-seq data analysis unveils a potential co-regulatory axis between WRN and the NMNATs, likely important for chromatin stability and DNA metabolism. However, restoration of mitochondrial or cellular NAD<sup>+</sup> is not sufficient to reinstall cellular proliferation in immortalized cells with siRNA-mediated knockdown of <i>WRN</i>, highlighting an indispensable role of WRN in proliferation even in an NAD<sup>+</sup> affluent environment. Further cell and animal studies are needed to deepen our understanding of the underlying mechanisms, facilitating related drug development.</p>","PeriodicalId":55547,"journal":{"name":"Aging-Us","volume":"null ","pages":"937-959"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12074813/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging-Us","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.18632/aging.206236","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Werner syndrome (WS), caused by mutations in the RecQ helicase WERNER (WRN) gene, is a classical accelerated aging disease with patients suffering from several metabolic dysfunctions without a cure. While, as we previously reported, depleted NAD+ causes accumulation of damaged mitochondria, leading to compromised metabolism, how mitochondrial NAD+ changes in WS and the impact on WS pathologies were unknown. We show that loss of WRN increases senescence in mesenchymal stem cells (MSCs) likely related to dysregulation of metabolic and aging pathways. In line with this, NAD+ augmentation, via supplementation with nicotinamide riboside, reduces senescence and improves mitochondrial metabolic profiles in MSCs with WRN knockout (WRN-/-) and in primary fibroblasts derived from WS patients compared to controls. Moreover, WRN deficiency results in decreased mitochondrial NAD+ (measured indirectly via mitochondrially-expressed PARP activity), and altered expression of key salvage pathway enzymes, including NMNAT1 and NAMPT; ChIP-seq data analysis unveils a potential co-regulatory axis between WRN and the NMNATs, likely important for chromatin stability and DNA metabolism. However, restoration of mitochondrial or cellular NAD+ is not sufficient to reinstall cellular proliferation in immortalized cells with siRNA-mediated knockdown of WRN, highlighting an indispensable role of WRN in proliferation even in an NAD+ affluent environment. Further cell and animal studies are needed to deepen our understanding of the underlying mechanisms, facilitating related drug development.

WRN缺陷细胞中线粒体NAD+的减少与增殖功能障碍有关。
Werner综合征(WS)是一种典型的加速衰老疾病,由RecQ解旋酶Werner (WRN)基因突变引起,患者患有多种代谢功能障碍而无法治愈。然而,正如我们之前报道的那样,NAD+的缺失会导致受损线粒体的积累,从而导致代谢受损,但线粒体NAD+在WS中的变化以及对WS病理的影响尚不清楚。我们发现,WRN的缺失会增加间充质干细胞(MSCs)的衰老,这可能与代谢和衰老途径的失调有关。与此相一致的是,与对照组相比,通过补充烟酰胺核苷来增强NAD+,可以减少WRN敲除(WRN-/-)的MSCs和来自WS患者的原代成纤维细胞的衰老并改善线粒体代谢谱。此外,WRN缺乏导致线粒体NAD+(通过线粒体表达的PARP活性间接测量)降低,并改变关键挽救途径酶的表达,包括NMNAT1和NAMPT;ChIP-seq数据分析揭示了WRN和NMNATs之间潜在的共调控轴,可能对染色质稳定性和DNA代谢很重要。然而,在sirna介导的WRN敲低的永生化细胞中,恢复线粒体或细胞NAD+并不足以重新恢复细胞增殖,这突出了即使在NAD+丰富的环境中,WRN在增殖中也起着不可或缺的作用。需要进一步的细胞和动物研究来加深我们对潜在机制的理解,促进相关药物的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aging-Us
Aging-Us CELL BIOLOGY-
CiteScore
10.00
自引率
0.00%
发文量
595
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信