Gentile Giulia, De Stefano Ferdinando, Sorrentino Carmela, D'Angiolo Rosa, Lauretta Carmine, Giovannelli Pia, Migliaccio Antimo, Castoria Gabriella, Di Donato Marzia
{"title":"Androgens as the \"old age stick\" in skeletal muscle.","authors":"Gentile Giulia, De Stefano Ferdinando, Sorrentino Carmela, D'Angiolo Rosa, Lauretta Carmine, Giovannelli Pia, Migliaccio Antimo, Castoria Gabriella, Di Donato Marzia","doi":"10.1186/s12964-025-02163-6","DOIUrl":null,"url":null,"abstract":"<p><p>Aging is associated with a reduction in skeletal muscle fiber size and number, leading to a decline in physical function and structural integrity-a condition known as sarcopenia. This syndrome is further characterized by elevated levels of inflammatory mediators that promote skeletal muscle catabolism and reduce anabolic signaling.Androgens are involved in various biological processes, including the maintenance, homeostasis and trophism of skeletal muscle mass. The decline in androgen levels contributes, indeed, to androgen deficiency in aging people. Such clinical syndrome exacerbates the muscle loss and fosters sarcopenia progression. Nevertheless, the mechanism(s) by which the reduction in androgen levels influences sarcopenia risk and progression remains debated and the therapeutic benefits of androgen-based interventions are still unclear. Given the significant societal and economic impacts of sarcopenia, investigating the androgen/androgen receptor axis in skeletal muscle function is essential to enhance treatment efficacy and reduce healthcare costs.This review summarizes current knowledge on the role of male hormones and their-dependent signaling pathways in sarcopenia. We also highlight the cellular and molecular features of this condition and discuss the mechanisms by which androgens preserve the muscle homeostasis. The pros and cons of clinical strategies and emerging therapies aimed at mitigating muscle degeneration and aging-related decline are also presented.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"167"},"PeriodicalIF":8.2000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11969971/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-025-02163-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aging is associated with a reduction in skeletal muscle fiber size and number, leading to a decline in physical function and structural integrity-a condition known as sarcopenia. This syndrome is further characterized by elevated levels of inflammatory mediators that promote skeletal muscle catabolism and reduce anabolic signaling.Androgens are involved in various biological processes, including the maintenance, homeostasis and trophism of skeletal muscle mass. The decline in androgen levels contributes, indeed, to androgen deficiency in aging people. Such clinical syndrome exacerbates the muscle loss and fosters sarcopenia progression. Nevertheless, the mechanism(s) by which the reduction in androgen levels influences sarcopenia risk and progression remains debated and the therapeutic benefits of androgen-based interventions are still unclear. Given the significant societal and economic impacts of sarcopenia, investigating the androgen/androgen receptor axis in skeletal muscle function is essential to enhance treatment efficacy and reduce healthcare costs.This review summarizes current knowledge on the role of male hormones and their-dependent signaling pathways in sarcopenia. We also highlight the cellular and molecular features of this condition and discuss the mechanisms by which androgens preserve the muscle homeostasis. The pros and cons of clinical strategies and emerging therapies aimed at mitigating muscle degeneration and aging-related decline are also presented.
期刊介绍:
Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior.
Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.