N-Lactoyl amino acids as metabolic biomarkers differentiating low and high exercise response.

IF 4.2 2区 医学 Q1 SPORT SCIENCES
Biology of Sport Pub Date : 2025-04-01 Epub Date: 2024-12-19 DOI:10.5114/biolsport.2025.145912
Maha Sellami, Khaled Naja, Shamma Almuraikhy, Najeha Anwardeen, Rinat I Sultanov, Eduard V Generozov, Ildus I Ahmetov, Mohamed A Elrayess
{"title":"N-Lactoyl amino acids as metabolic biomarkers differentiating low and high exercise response.","authors":"Maha Sellami, Khaled Naja, Shamma Almuraikhy, Najeha Anwardeen, Rinat I Sultanov, Eduard V Generozov, Ildus I Ahmetov, Mohamed A Elrayess","doi":"10.5114/biolsport.2025.145912","DOIUrl":null,"url":null,"abstract":"<p><p>Aerobic physical exercise has significant benefits for cardiovascular health; however, some individuals experience no benefit or even adverse effects. One reason for poor tolerance to aerobic exercise may be a low percentage of slow-twitch (oxidative) muscle fibers. This study aims to identify the metabolic signatures associated with low and high response to exercise by comparing the metabolic profiles of participants categorized according to their improvement of the 6-minute walking distance. In this study, pre- and postexercise intervention measurements of the 6-minute walking distance were conducted in forty-three lean and overweight young women, followed by non-targeted metabolomics analysis of 1039 known metabolites. An independent validation cohort comprising 791 individuals from the GTEx project was used to assess the gene expression of selected targets. The results indicated that a low improvement in the 6-minute walking distance (Δ 6-MWD = 27 meters) was associated with higher serum levels of N-lactoyl amino acid metabolites, particularly the exercise-inducible metabolite N-lactoyl phenylalanine (Lac-Phe) (FDR = 0.016), compared to high responders. Our results were corroborated in an independent validation cohort, which showed that the gene expression of cytosolic nonspecific dipeptidase (<i>CNDP2</i>), the enzyme responsible for Lac-Phe synthesis, is negatively associated with the percentage of slow-twitch muscle fibers (<i>p</i> < 0.0001). N-lactoyl amino acids may serve as biomarkers for rapid muscle fatigue and low response to exercise, and could be used as metabolic indicators to differentiate exercise response efficacy.</p>","PeriodicalId":55365,"journal":{"name":"Biology of Sport","volume":"42 2","pages":"331-344"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11963115/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology of Sport","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5114/biolsport.2025.145912","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Aerobic physical exercise has significant benefits for cardiovascular health; however, some individuals experience no benefit or even adverse effects. One reason for poor tolerance to aerobic exercise may be a low percentage of slow-twitch (oxidative) muscle fibers. This study aims to identify the metabolic signatures associated with low and high response to exercise by comparing the metabolic profiles of participants categorized according to their improvement of the 6-minute walking distance. In this study, pre- and postexercise intervention measurements of the 6-minute walking distance were conducted in forty-three lean and overweight young women, followed by non-targeted metabolomics analysis of 1039 known metabolites. An independent validation cohort comprising 791 individuals from the GTEx project was used to assess the gene expression of selected targets. The results indicated that a low improvement in the 6-minute walking distance (Δ 6-MWD = 27 meters) was associated with higher serum levels of N-lactoyl amino acid metabolites, particularly the exercise-inducible metabolite N-lactoyl phenylalanine (Lac-Phe) (FDR = 0.016), compared to high responders. Our results were corroborated in an independent validation cohort, which showed that the gene expression of cytosolic nonspecific dipeptidase (CNDP2), the enzyme responsible for Lac-Phe synthesis, is negatively associated with the percentage of slow-twitch muscle fibers (p < 0.0001). N-lactoyl amino acids may serve as biomarkers for rapid muscle fatigue and low response to exercise, and could be used as metabolic indicators to differentiate exercise response efficacy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology of Sport
Biology of Sport 生物-运动科学
CiteScore
8.20
自引率
12.50%
发文量
113
审稿时长
>12 weeks
期刊介绍: Biology of Sport is the official journal of the Institute of Sport in Warsaw, Poland, published since 1984. Biology of Sport is an international scientific peer-reviewed journal, published quarterly in both paper and electronic format. The journal publishes articles concerning basic and applied sciences in sport: sports and exercise physiology, sports immunology and medicine, sports genetics, training and testing, pharmacology, as well as in other biological aspects related to sport. Priority is given to inter-disciplinary papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信