Creating a Proxy for Baseline Eastern Cooperative Oncology Group Performance Status in Electronic Health Records for Comparative Effectiveness Research in Advanced Non-Small Cell Lung Cancer.

IF 3.3 Q2 ONCOLOGY
JCO Clinical Cancer Informatics Pub Date : 2025-04-01 Epub Date: 2025-04-03 DOI:10.1200/CCI-24-00185
Michael Johnson, Peining Tao, Mehmet Burcu, John Kang, Richard Baumgartner, Junshui Ma, Vladimir Svetnik
{"title":"Creating a Proxy for Baseline Eastern Cooperative Oncology Group Performance Status in Electronic Health Records for Comparative Effectiveness Research in Advanced Non-Small Cell Lung Cancer.","authors":"Michael Johnson, Peining Tao, Mehmet Burcu, John Kang, Richard Baumgartner, Junshui Ma, Vladimir Svetnik","doi":"10.1200/CCI-24-00185","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Eastern Cooperative Oncology Group performance status (ECOG PS) is a key confounder in comparative effectiveness research, predicting treatment and survival, but is often incomplete in electronic health records (EHRs). Imputation on the basis of classification metrics alone may introduce differences in survival between patients with known and imputed ECOG PS, complicating comparative effectiveness research. We developed an approach to impute ECOG PS so that those with known and imputed ECOG PS are indistinguishable in their survival, reducing potential biases introduced by the imputation.</p><p><strong>Methods: </strong>We analyzed deidentified data from an EHR-derived database for patients with advanced non-small cell lung cancer (aNSCLC) at their first line of treatment. Our novel imputation method involved (1) sample-splitting patients with known ECOG PS into modeling and thresholding data sets, (2) developing a predictive model of ECOG PS, (3) determining an optimal threshold aligning clinical outcomes, where a choice of outcome metric may depend on the use case, and (4) applying the model and threshold to impute missing ECOG PS. We evaluated the approach using binary classification metrics and alignment of survival metrics between observed and imputed ECOG PS.</p><p><strong>Results: </strong>Of 62,101 patients, 13,297 (21%) had missing ECOG PS at the start of their first treatment. Our method achieved similar or better performance in accuracy (73.3%), sensitivity (42.4%), and specificity (81%) compared with other techniques, with smaller survival metric differences between observed and imputed ECOG PS, with differences of 0.07 in hazard ratio, -0.36 months in median survival for good ECOG PS (<2), and -0.39 months for poor ECOG PS (≥2).</p><p><strong>Conclusion: </strong>Our imputed ECOG PS aligning clinical outcomes enhanced the use of real-world EHR data of patients with aNSCLC for comparative effectiveness research.</p>","PeriodicalId":51626,"journal":{"name":"JCO Clinical Cancer Informatics","volume":"9 ","pages":"e2400185"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO Clinical Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1200/CCI-24-00185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Eastern Cooperative Oncology Group performance status (ECOG PS) is a key confounder in comparative effectiveness research, predicting treatment and survival, but is often incomplete in electronic health records (EHRs). Imputation on the basis of classification metrics alone may introduce differences in survival between patients with known and imputed ECOG PS, complicating comparative effectiveness research. We developed an approach to impute ECOG PS so that those with known and imputed ECOG PS are indistinguishable in their survival, reducing potential biases introduced by the imputation.

Methods: We analyzed deidentified data from an EHR-derived database for patients with advanced non-small cell lung cancer (aNSCLC) at their first line of treatment. Our novel imputation method involved (1) sample-splitting patients with known ECOG PS into modeling and thresholding data sets, (2) developing a predictive model of ECOG PS, (3) determining an optimal threshold aligning clinical outcomes, where a choice of outcome metric may depend on the use case, and (4) applying the model and threshold to impute missing ECOG PS. We evaluated the approach using binary classification metrics and alignment of survival metrics between observed and imputed ECOG PS.

Results: Of 62,101 patients, 13,297 (21%) had missing ECOG PS at the start of their first treatment. Our method achieved similar or better performance in accuracy (73.3%), sensitivity (42.4%), and specificity (81%) compared with other techniques, with smaller survival metric differences between observed and imputed ECOG PS, with differences of 0.07 in hazard ratio, -0.36 months in median survival for good ECOG PS (<2), and -0.39 months for poor ECOG PS (≥2).

Conclusion: Our imputed ECOG PS aligning clinical outcomes enhanced the use of real-world EHR data of patients with aNSCLC for comparative effectiveness research.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
4.80%
发文量
190
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信