Di Zhao, Wenxuan Mu, Xiangxing Jia, Shuang Liu, Yonghe Chu, Jiana Meng, Hongfei Lin
{"title":"Few-shot biomedical NER empowered by LLMs-assisted data augmentation and multi-scale feature extraction.","authors":"Di Zhao, Wenxuan Mu, Xiangxing Jia, Shuang Liu, Yonghe Chu, Jiana Meng, Hongfei Lin","doi":"10.1186/s13040-025-00443-y","DOIUrl":null,"url":null,"abstract":"<p><p>Named Entity Recognition (NER) is a fundamental task in processing biomedical text. Due to the limited availability of labeled data, researchers have investigated few-shot learning methods to tackle this challenge. However, replicating the performance of fully supervised methods remains difficult in few-shot scenarios. This paper addresses two main issues. In terms of data augmentation, existing methods primarily focus on replacing content in the original text, which can potentially distort the semantics. Furthermore, current approaches often neglect sentence features at multiple scales. To overcome these challenges, we utilize ChatGPT to generate enriched data with distinct semantics for the same entities, thereby reducing noisy data. Simultaneously, we employ dynamic convolution to capture multi-scale semantic information in sentences and enhance feature representation based on PubMedBERT. We evaluated the experiments on four biomedical NER datasets (BC5CDR-Disease, NCBI, BioNLP11EPI, BioNLP13GE), and the results exceeded the current state-of-the-art models in most few-shot scenarios, including mainstream large language models like ChatGPT. The results confirm the effectiveness of the proposed method in data augmentation and model generalization.</p>","PeriodicalId":48947,"journal":{"name":"Biodata Mining","volume":"18 1","pages":"28"},"PeriodicalIF":4.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11969866/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodata Mining","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13040-025-00443-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Named Entity Recognition (NER) is a fundamental task in processing biomedical text. Due to the limited availability of labeled data, researchers have investigated few-shot learning methods to tackle this challenge. However, replicating the performance of fully supervised methods remains difficult in few-shot scenarios. This paper addresses two main issues. In terms of data augmentation, existing methods primarily focus on replacing content in the original text, which can potentially distort the semantics. Furthermore, current approaches often neglect sentence features at multiple scales. To overcome these challenges, we utilize ChatGPT to generate enriched data with distinct semantics for the same entities, thereby reducing noisy data. Simultaneously, we employ dynamic convolution to capture multi-scale semantic information in sentences and enhance feature representation based on PubMedBERT. We evaluated the experiments on four biomedical NER datasets (BC5CDR-Disease, NCBI, BioNLP11EPI, BioNLP13GE), and the results exceeded the current state-of-the-art models in most few-shot scenarios, including mainstream large language models like ChatGPT. The results confirm the effectiveness of the proposed method in data augmentation and model generalization.
期刊介绍:
BioData Mining is an open access, open peer-reviewed journal encompassing research on all aspects of data mining applied to high-dimensional biological and biomedical data, focusing on computational aspects of knowledge discovery from large-scale genetic, transcriptomic, genomic, proteomic, and metabolomic data.
Topical areas include, but are not limited to:
-Development, evaluation, and application of novel data mining and machine learning algorithms.
-Adaptation, evaluation, and application of traditional data mining and machine learning algorithms.
-Open-source software for the application of data mining and machine learning algorithms.
-Design, development and integration of databases, software and web services for the storage, management, retrieval, and analysis of data from large scale studies.
-Pre-processing, post-processing, modeling, and interpretation of data mining and machine learning results for biological interpretation and knowledge discovery.