A new set of mutations in the second transmembrane helix of the Cox2p-W56R substantially improves its allotopic expression in Saccharomyces cerevisiae.
{"title":"A new set of mutations in the second transmembrane helix of the Cox2p-W56R substantially improves its allotopic expression in Saccharomyces cerevisiae.","authors":"Kewin Gombeau, Stefan A Hoffmann, Yizhi Cai","doi":"10.1093/genetics/iyaf037","DOIUrl":null,"url":null,"abstract":"<p><p>The dual genetic control of mitochondrial respiratory function, combined with the high mutation rate of the mitochondrial genome (mtDNA), makes mitochondrial diseases among the most frequent genetic diseases in humans (1 in 5,000 in adults). With no effective treatments available, gene therapy approaches have been proposed. Notably, several studies have demonstrated the potential for nuclear expression of a healthy copy of a dysfunctional mitochondrial gene, referred to as allotopic expression, to help recover respiratory function. However, allotopic expression conditions require significant optimization. We harnessed engineering biology tools to improve the allotopic expression of the COX2-W56R gene in the budding yeast Saccharomyces cerevisiae. Through conducting random mutagenesis and screening of the impact of vector copy number, promoter, and mitochondrial targeting sequence, we substantially increased the mitochondrial incorporation of the allotopic protein and significantly increased recovery of mitochondrial respiration. Moreover, CN-PAGE analyses revealed that our optimized allotopic protein does not impact cytochrome c oxidase assembly, or the biogenesis of respiratory chain supercomplexes. Importantly, the most beneficial amino acid substitutions found in the second transmembrane helix (L93S and I102K) are conserved residues in the corresponding positions of human MT-CO2 (L73 and L75), and we propose that mirroring these changes could potentially help improve allotopic Cox2p expression in human cells. To conclude, this study demonstrates the effectiveness of using engineering biology approaches to optimise allotopic expression of mitochondrial genes in the baker's yeast.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyaf037","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
The dual genetic control of mitochondrial respiratory function, combined with the high mutation rate of the mitochondrial genome (mtDNA), makes mitochondrial diseases among the most frequent genetic diseases in humans (1 in 5,000 in adults). With no effective treatments available, gene therapy approaches have been proposed. Notably, several studies have demonstrated the potential for nuclear expression of a healthy copy of a dysfunctional mitochondrial gene, referred to as allotopic expression, to help recover respiratory function. However, allotopic expression conditions require significant optimization. We harnessed engineering biology tools to improve the allotopic expression of the COX2-W56R gene in the budding yeast Saccharomyces cerevisiae. Through conducting random mutagenesis and screening of the impact of vector copy number, promoter, and mitochondrial targeting sequence, we substantially increased the mitochondrial incorporation of the allotopic protein and significantly increased recovery of mitochondrial respiration. Moreover, CN-PAGE analyses revealed that our optimized allotopic protein does not impact cytochrome c oxidase assembly, or the biogenesis of respiratory chain supercomplexes. Importantly, the most beneficial amino acid substitutions found in the second transmembrane helix (L93S and I102K) are conserved residues in the corresponding positions of human MT-CO2 (L73 and L75), and we propose that mirroring these changes could potentially help improve allotopic Cox2p expression in human cells. To conclude, this study demonstrates the effectiveness of using engineering biology approaches to optimise allotopic expression of mitochondrial genes in the baker's yeast.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.