Attention-based Vision Transformer Enables Early Detection of Radiotherapy-Induced Toxicity in Magnetic Resonance Images of a Preclinical Model.

IF 2.7 4区 医学 Q3 ONCOLOGY
Technology in Cancer Research & Treatment Pub Date : 2025-01-01 Epub Date: 2025-04-04 DOI:10.1177/15330338251333018
Manish Kakar, Bao Ngoc Huynh, Olga Zlygosteva, Inga Solgård Juvkam, Nina Edin, Oliver Tomic, Cecilia Marie Futsaether, Eirik Malinen
{"title":"Attention-based Vision Transformer Enables Early Detection of Radiotherapy-Induced Toxicity in Magnetic Resonance Images of a Preclinical Model.","authors":"Manish Kakar, Bao Ngoc Huynh, Olga Zlygosteva, Inga Solgård Juvkam, Nina Edin, Oliver Tomic, Cecilia Marie Futsaether, Eirik Malinen","doi":"10.1177/15330338251333018","DOIUrl":null,"url":null,"abstract":"<p><p>IntroductionEarly identification of patients at risk for toxicity induced by radiotherapy (RT) is essential for developing personalized treatments and mitigation plans. Preclinical models with relevant endpoints are critical for systematic evaluation of normal tissue responses. This study aims to determine whether attention-based vision transformers can classify MR images of irradiated and control mice, potentially aiding early identification of individuals at risk of developing toxicity.MethodC57BL/6J mice (n = 14) were subjected to 66 Gy of fractionated RT targeting the oral cavity, swallowing muscles, and salivary glands. A control group (n = 15) received no irradiation but was otherwise treated identically. T2-weighted MR images were obtained 3-5 days post-irradiation. Late toxicity in terms of saliva production in individual mice was assessed at day 105 after treatment. A pre-trained vision transformer model (ViT Base 16) was employed to classify the images into control and irradiated groups.ResultsThe ViT Base 16 model classified the MR images with an accuracy of 69%, with identical overall performance for control and irradiated animals. The ViT's model predictions showed a significant correlation with late toxicity (r = 0.65, p < 0.01). One of the attention maps from the ViT model highlighted the irradiated regions of the animals.ConclusionsAttention-based vision transformers using MRI have the potential to predict individuals at risk of developing early toxicity. This approach may enhance personalized treatment and follow-up strategies in head and neck cancer radiotherapy.</p>","PeriodicalId":22203,"journal":{"name":"Technology in Cancer Research & Treatment","volume":"24 ","pages":"15330338251333018"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11970093/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology in Cancer Research & Treatment","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15330338251333018","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

IntroductionEarly identification of patients at risk for toxicity induced by radiotherapy (RT) is essential for developing personalized treatments and mitigation plans. Preclinical models with relevant endpoints are critical for systematic evaluation of normal tissue responses. This study aims to determine whether attention-based vision transformers can classify MR images of irradiated and control mice, potentially aiding early identification of individuals at risk of developing toxicity.MethodC57BL/6J mice (n = 14) were subjected to 66 Gy of fractionated RT targeting the oral cavity, swallowing muscles, and salivary glands. A control group (n = 15) received no irradiation but was otherwise treated identically. T2-weighted MR images were obtained 3-5 days post-irradiation. Late toxicity in terms of saliva production in individual mice was assessed at day 105 after treatment. A pre-trained vision transformer model (ViT Base 16) was employed to classify the images into control and irradiated groups.ResultsThe ViT Base 16 model classified the MR images with an accuracy of 69%, with identical overall performance for control and irradiated animals. The ViT's model predictions showed a significant correlation with late toxicity (r = 0.65, p < 0.01). One of the attention maps from the ViT model highlighted the irradiated regions of the animals.ConclusionsAttention-based vision transformers using MRI have the potential to predict individuals at risk of developing early toxicity. This approach may enhance personalized treatment and follow-up strategies in head and neck cancer radiotherapy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
202
审稿时长
2 months
期刊介绍: Technology in Cancer Research & Treatment (TCRT) is a JCR-ranked, broad-spectrum, open access, peer-reviewed publication whose aim is to provide researchers and clinicians with a platform to share and discuss developments in the prevention, diagnosis, treatment, and monitoring of cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信