Ruihua Huang, Hanyu Cui, Mohammed Abdulaziz Yahya Ali Alshami, Chuankui Fu, Wei Jiang, Mingyuan Cai, Shuhan Zhou, Xiaoyun Zhu, Changping Hu
{"title":"LOX-1 rewires glutamine ammonia metabolism to drive liver fibrosis.","authors":"Ruihua Huang, Hanyu Cui, Mohammed Abdulaziz Yahya Ali Alshami, Chuankui Fu, Wei Jiang, Mingyuan Cai, Shuhan Zhou, Xiaoyun Zhu, Changping Hu","doi":"10.1016/j.molmet.2025.102132","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Liver fibrosis is a crucial condition for evaluating the prognosis of chronic liver disease. Lectin-1ike oxidized low density lipoprotein receptor-1 (LOX-1) has been shown potential research value and therapeutic targeting possibilities in different fibrotic diseases. However, the role of LOX-1 and the underlying mechanisms in liver fibrosis progression remain unclear.</p><p><strong>Methods: </strong>LOX-1 expression was detected in liver tissues from patients and rodents with liver fibrosis. LOX-1 knockout rats were subjected to CCl<sub>4</sub> or methionine and choline-deficient diet (MCD) to induce liver fibrosis. Transcriptomic and metabolomics analysis were used to investigate the involvement and mechanism of LOX-1 on liver fibrosis.</p><p><strong>Results: </strong>We found that LOX-1 exacerbated liver fibrosis by promoting hepatic stellate cells (HSCs) activation. LOX-1 deletion reversed the development of liver fibrosis. We further verified that LOX-1 drove liver fibrosis by reprogramming glutamine metabolism through mediating isoform switching of glutaminase (GLS). Mechanistically, we revealed the crucial role of the LOX-1/OCT1/GLS1 axis in the pathogenesis of liver fibrosis. Moreover, LOX-1 rewired ammonia metabolism by regulating glutamine metabolism-urea cycle to drive the progression of liver fibrosis.</p><p><strong>Conclusions: </strong>Our findings uncover the pivotal role of LOX-1 in the progression of liver fibrosis, enrich the pathological significance of LOX-1 regulation of hepatic ammonia metabolism, and provide an insight into promising targets for the therapeutic strategy of liver fibrosis, demonstrating the potential clinical value of targeting LOX-1 in antifibrotic therapy.</p>","PeriodicalId":18765,"journal":{"name":"Molecular Metabolism","volume":" ","pages":"102132"},"PeriodicalIF":7.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.molmet.2025.102132","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Liver fibrosis is a crucial condition for evaluating the prognosis of chronic liver disease. Lectin-1ike oxidized low density lipoprotein receptor-1 (LOX-1) has been shown potential research value and therapeutic targeting possibilities in different fibrotic diseases. However, the role of LOX-1 and the underlying mechanisms in liver fibrosis progression remain unclear.
Methods: LOX-1 expression was detected in liver tissues from patients and rodents with liver fibrosis. LOX-1 knockout rats were subjected to CCl4 or methionine and choline-deficient diet (MCD) to induce liver fibrosis. Transcriptomic and metabolomics analysis were used to investigate the involvement and mechanism of LOX-1 on liver fibrosis.
Results: We found that LOX-1 exacerbated liver fibrosis by promoting hepatic stellate cells (HSCs) activation. LOX-1 deletion reversed the development of liver fibrosis. We further verified that LOX-1 drove liver fibrosis by reprogramming glutamine metabolism through mediating isoform switching of glutaminase (GLS). Mechanistically, we revealed the crucial role of the LOX-1/OCT1/GLS1 axis in the pathogenesis of liver fibrosis. Moreover, LOX-1 rewired ammonia metabolism by regulating glutamine metabolism-urea cycle to drive the progression of liver fibrosis.
Conclusions: Our findings uncover the pivotal role of LOX-1 in the progression of liver fibrosis, enrich the pathological significance of LOX-1 regulation of hepatic ammonia metabolism, and provide an insight into promising targets for the therapeutic strategy of liver fibrosis, demonstrating the potential clinical value of targeting LOX-1 in antifibrotic therapy.
期刊介绍:
Molecular Metabolism is a leading journal dedicated to sharing groundbreaking discoveries in the field of energy homeostasis and the underlying factors of metabolic disorders. These disorders include obesity, diabetes, cardiovascular disease, and cancer. Our journal focuses on publishing research driven by hypotheses and conducted to the highest standards, aiming to provide a mechanistic understanding of energy homeostasis-related behavior, physiology, and dysfunction.
We promote interdisciplinary science, covering a broad range of approaches from molecules to humans throughout the lifespan. Our goal is to contribute to transformative research in metabolism, which has the potential to revolutionize the field. By enabling progress in the prognosis, prevention, and ultimately the cure of metabolic disorders and their long-term complications, our journal seeks to better the future of health and well-being.