Diet-induced obesity dampens the temporal oscillation of hepatic mitochondrial lipids.

IF 5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Rashi Jain, Rajprabu Rajendran, Sona Rajakumari
{"title":"Diet-induced obesity dampens the temporal oscillation of hepatic mitochondrial lipids.","authors":"Rashi Jain, Rajprabu Rajendran, Sona Rajakumari","doi":"10.1016/j.jlr.2025.100790","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria play a pivotal role in energy homeostasis and regulate several metabolic pathways. The inner and outer membrane of mitochondria comprises unique lipid composition and proteins that are essential to form electron transport chain complexes, orchestrate oxidative phosphorylation, β-oxidation, ATP synthesis, etc. As known diet-induced obesity affects mitochondrial function, dynamics, and mitophagy, which are governed by circadian clock machinery. Though DIO impairs the interplay between circadian oscillation and lipid metabolism, the impact of DIO on mitochondrial membrane lipid composition and their temporal oscillation is unknown. Thus, we investigated the diurnal oscillation of liver mitochondrial lipidome at various Zeitgeber times using quantitative lipidomics. Our data suggested that obesity disrupted lipid accumulation profiles and diminished the oscillating lipid species in the hepatic mitochondria. Strikingly, HFD manifested a more homogenous temporal oscillation pattern in phospholipids regardless of possessing different fatty acyl-chain lengths and degrees of unsaturation. In particular, DIO impaired the circadian rhythmicity of phosphatidyl ethanolamine, phosphatidyl choline, phosphatidyl serine and ether-linked phosphatidyl ethanolamine. Also, DIO altered the rhythmic profile of PE/PC, ePE/PC, PS/PC ratio and key proteins related to mitochondrial function, dynamics, and quality control. Since HFD dampened lipid oscillation, we examined whether the diurnal oscillation of mitochondrial lipids synchronized with mitochondrial function. Also, our data emphasized that acrophase of mitochondrial lipids synchronized with increased oxygen consumption rate and Parkin levels at ZT16 in chow-fed mice. Our study revealed that obesity altered the mitochondrial lipid composition and hampered the rhythmicity of mitochondrial lipids, oxygen consumption rate and Parkin levels in the liver.</p>","PeriodicalId":16209,"journal":{"name":"Journal of Lipid Research","volume":" ","pages":"100790"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lipid Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jlr.2025.100790","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mitochondria play a pivotal role in energy homeostasis and regulate several metabolic pathways. The inner and outer membrane of mitochondria comprises unique lipid composition and proteins that are essential to form electron transport chain complexes, orchestrate oxidative phosphorylation, β-oxidation, ATP synthesis, etc. As known diet-induced obesity affects mitochondrial function, dynamics, and mitophagy, which are governed by circadian clock machinery. Though DIO impairs the interplay between circadian oscillation and lipid metabolism, the impact of DIO on mitochondrial membrane lipid composition and their temporal oscillation is unknown. Thus, we investigated the diurnal oscillation of liver mitochondrial lipidome at various Zeitgeber times using quantitative lipidomics. Our data suggested that obesity disrupted lipid accumulation profiles and diminished the oscillating lipid species in the hepatic mitochondria. Strikingly, HFD manifested a more homogenous temporal oscillation pattern in phospholipids regardless of possessing different fatty acyl-chain lengths and degrees of unsaturation. In particular, DIO impaired the circadian rhythmicity of phosphatidyl ethanolamine, phosphatidyl choline, phosphatidyl serine and ether-linked phosphatidyl ethanolamine. Also, DIO altered the rhythmic profile of PE/PC, ePE/PC, PS/PC ratio and key proteins related to mitochondrial function, dynamics, and quality control. Since HFD dampened lipid oscillation, we examined whether the diurnal oscillation of mitochondrial lipids synchronized with mitochondrial function. Also, our data emphasized that acrophase of mitochondrial lipids synchronized with increased oxygen consumption rate and Parkin levels at ZT16 in chow-fed mice. Our study revealed that obesity altered the mitochondrial lipid composition and hampered the rhythmicity of mitochondrial lipids, oxygen consumption rate and Parkin levels in the liver.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Lipid Research
Journal of Lipid Research 生物-生化与分子生物学
CiteScore
11.10
自引率
4.60%
发文量
146
审稿时长
41 days
期刊介绍: The Journal of Lipid Research (JLR) publishes original articles and reviews in the broadly defined area of biological lipids. We encourage the submission of manuscripts relating to lipids, including those addressing problems in biochemistry, molecular biology, structural biology, cell biology, genetics, molecular medicine, clinical medicine and metabolism. Major criteria for acceptance of articles are new insights into mechanisms of lipid function and metabolism and/or genes regulating lipid metabolism along with sound primary experimental data. Interpretation of the data is the authors’ responsibility, and speculation should be labeled as such. Manuscripts that provide new ways of purifying, identifying and quantifying lipids are invited for the Methods section of the Journal. JLR encourages contributions from investigators in all countries, but articles must be submitted in clear and concise English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信