Effects of Sustained Tensile Distraction on Vertebrae and Intervertebral Disc Growth: An in Vivo Study Using a Mouse Tail Model.

IF 4.4 1区 医学 Q1 ORTHOPEDICS
Pooria Salari, Garrett W D Easson, Kaitlyn S Broz, Michael P Kelly, Simon Y Tang
{"title":"Effects of Sustained Tensile Distraction on Vertebrae and Intervertebral Disc Growth: An in Vivo Study Using a Mouse Tail Model.","authors":"Pooria Salari, Garrett W D Easson, Kaitlyn S Broz, Michael P Kelly, Simon Y Tang","doi":"10.2106/JBJS.24.00224","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Directed growth modulation is commonly utilized as a surgical treatment for early-onset scoliosis. Growing rods are instrumented on the spine and apply sustained tension on the immature spine for a substantial amount of time, with the clinical goal of accommodating axial expansion of the spine. Despite the use of growing rods in humans, the mechanobiology of the spinal tissues under tensile loading remains relatively unknown. To bridge this knowledge gap, we developed a preclinical mouse model that allows for mechanistic investigations of sustained tension on the spine.</p><p><strong>Methods: </strong>Using custom 3D-printed washers and tunable springs, we distracted across the seventh and ninth caudal vertebrae of adolescent and young adult C57BL/6 female mice with forces that were approximately 2 times the body mass of the animal. The springs were replaced weekly to maintain tension for the duration of the experiment. A set of 6-week-old animals were first instrumented for 10 weeks to evaluate the feasibility and tolerability. Subsequently, the 6- and 12-week-old experimental animals were instrumented until they were 20 weeks of age in order to evaluate the effects of tension until adulthood. The spines were monitored using digital radiography and micro-computed tomography (µCT), and the intervertebral discs (IVDs) were evaluated using mechanical testing and compositional assays.</p><p><strong>Results: </strong>The device was well tolerated and caused no notable complications. The tensile forces lengthened the vertebrae in the 6-week-old animals that were instrumented for 14 weeks and in the 12-week-old animals that were instrumented for 8 weeks. Increased IVD heights were observed in the 6-week-old animals but not in the 12-week-old animals. The porosity of the vertebral end plates increased following instrumentation in all groups but progressively recovered over time.</p><p><strong>Conclusions: </strong>Distraction accelerated the lengthening of the vertebrae and the heightening of the IVD, with no observable degeneration or decline in the mechanical performance of the IVDs for these distraction conditions.</p><p><strong>Clinical relevance: </strong>This model will be useful for investigating how spinal tissues adapt to directed growth modulation with maturation and aging.</p>","PeriodicalId":15273,"journal":{"name":"Journal of Bone and Joint Surgery, American Volume","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone and Joint Surgery, American Volume","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2106/JBJS.24.00224","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Directed growth modulation is commonly utilized as a surgical treatment for early-onset scoliosis. Growing rods are instrumented on the spine and apply sustained tension on the immature spine for a substantial amount of time, with the clinical goal of accommodating axial expansion of the spine. Despite the use of growing rods in humans, the mechanobiology of the spinal tissues under tensile loading remains relatively unknown. To bridge this knowledge gap, we developed a preclinical mouse model that allows for mechanistic investigations of sustained tension on the spine.

Methods: Using custom 3D-printed washers and tunable springs, we distracted across the seventh and ninth caudal vertebrae of adolescent and young adult C57BL/6 female mice with forces that were approximately 2 times the body mass of the animal. The springs were replaced weekly to maintain tension for the duration of the experiment. A set of 6-week-old animals were first instrumented for 10 weeks to evaluate the feasibility and tolerability. Subsequently, the 6- and 12-week-old experimental animals were instrumented until they were 20 weeks of age in order to evaluate the effects of tension until adulthood. The spines were monitored using digital radiography and micro-computed tomography (µCT), and the intervertebral discs (IVDs) were evaluated using mechanical testing and compositional assays.

Results: The device was well tolerated and caused no notable complications. The tensile forces lengthened the vertebrae in the 6-week-old animals that were instrumented for 14 weeks and in the 12-week-old animals that were instrumented for 8 weeks. Increased IVD heights were observed in the 6-week-old animals but not in the 12-week-old animals. The porosity of the vertebral end plates increased following instrumentation in all groups but progressively recovered over time.

Conclusions: Distraction accelerated the lengthening of the vertebrae and the heightening of the IVD, with no observable degeneration or decline in the mechanical performance of the IVDs for these distraction conditions.

Clinical relevance: This model will be useful for investigating how spinal tissues adapt to directed growth modulation with maturation and aging.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.90
自引率
7.50%
发文量
660
审稿时长
1 months
期刊介绍: The Journal of Bone & Joint Surgery (JBJS) has been the most valued source of information for orthopaedic surgeons and researchers for over 125 years and is the gold standard in peer-reviewed scientific information in the field. A core journal and essential reading for general as well as specialist orthopaedic surgeons worldwide, The Journal publishes evidence-based research to enhance the quality of care for orthopaedic patients. Standards of excellence and high quality are maintained in everything we do, from the science of the content published to the customer service we provide. JBJS is an independent, non-profit journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信