Speed-dependent locomotor patterns during steady swimming in a demersal shark.

IF 1.7 3区 农林科学 Q2 FISHERIES
Fidji Berio, Camille Morerod, Valentina Di Santo
{"title":"Speed-dependent locomotor patterns during steady swimming in a demersal shark.","authors":"Fidji Berio, Camille Morerod, Valentina Di Santo","doi":"10.1111/jfb.70043","DOIUrl":null,"url":null,"abstract":"<p><p>Swimming ability is critical for navigating complex benthic habitats, yet the biomechanical strategies demersal sharks employ to modulate body and fin movements across varying speeds remain largely unexplored. This study examines speed-dependent kinematic patterns in the small-spotted catshark (Scyliorhinus canicula), a benthic species with limited endurance for sustained swimming. Using high-speed videography in a flow tank, we quantified adjustments in tail beat frequency, body angle, wave speed and curvature across a range of speeds (0.5-6 body lengths per second). Our results reveal that S. canicula exhibits distinct kinematic shifts as speed increases, adopting a more streamlined posture and increasing tail beat frequency to accommodate higher flow rates. Principal component analysis identified swimming speed as the primary factor influencing kinematic variation, with higher speeds necessitating more consistent body alignment and tail movement. Strouhal numbers within the optimal range for propulsive efficiency (0.2-0.4) at intermediate speeds (1-2 BL s<sup>-1</sup>) suggest that S. canicula maximizes energetic efficiency within this range, although further research is required to elucidate the metabolic implications. This study establishes a foundational framework for understanding the biomechanics of steady swimming in a demersal shark, providing insights into the ecological and evolutionary pressures shaping locomotor adaptations in benthic species.</p>","PeriodicalId":15794,"journal":{"name":"Journal of fish biology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of fish biology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/jfb.70043","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

Abstract

Swimming ability is critical for navigating complex benthic habitats, yet the biomechanical strategies demersal sharks employ to modulate body and fin movements across varying speeds remain largely unexplored. This study examines speed-dependent kinematic patterns in the small-spotted catshark (Scyliorhinus canicula), a benthic species with limited endurance for sustained swimming. Using high-speed videography in a flow tank, we quantified adjustments in tail beat frequency, body angle, wave speed and curvature across a range of speeds (0.5-6 body lengths per second). Our results reveal that S. canicula exhibits distinct kinematic shifts as speed increases, adopting a more streamlined posture and increasing tail beat frequency to accommodate higher flow rates. Principal component analysis identified swimming speed as the primary factor influencing kinematic variation, with higher speeds necessitating more consistent body alignment and tail movement. Strouhal numbers within the optimal range for propulsive efficiency (0.2-0.4) at intermediate speeds (1-2 BL s-1) suggest that S. canicula maximizes energetic efficiency within this range, although further research is required to elucidate the metabolic implications. This study establishes a foundational framework for understanding the biomechanics of steady swimming in a demersal shark, providing insights into the ecological and evolutionary pressures shaping locomotor adaptations in benthic species.

底栖鲨鱼稳定游泳时的速度依赖性运动模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of fish biology
Journal of fish biology 生物-海洋与淡水生物学
CiteScore
4.00
自引率
10.00%
发文量
292
审稿时长
3 months
期刊介绍: The Journal of Fish Biology is a leading international journal for scientists engaged in all aspects of fishes and fisheries research, both fresh water and marine. The journal publishes high-quality papers relevant to the central theme of fish biology and aims to bring together under one cover an overall picture of the research in progress and to provide international communication among researchers in many disciplines with a common interest in the biology of fish.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信