Yifeng Zhou, Ting Que, Lu Yu, Shuping Que, Jun Xu, Zhengtao Liu
{"title":"Current understanding on inferior quality of liver grafts by donation after circulatory death based on multi-omics data.","authors":"Yifeng Zhou, Ting Que, Lu Yu, Shuping Que, Jun Xu, Zhengtao Liu","doi":"10.3389/fimmu.2025.1548735","DOIUrl":null,"url":null,"abstract":"<p><p>Given the inevitable hypoxia and reperfusion injury that occur in organs donated after circulatory death (DCD), the quality and function of these organs are significantly compromised, greatly limiting their application in clinical organ transplantation. Recently, the advancement of functional omics technologies has enabled us to deeply analyze the mechanisms underlying DCD donor organ damage from multiple perspectives. This review systematically integrates the studies from transcriptomics, proteomics, and metabolomics to reveal the key biological mechanisms associated with the declines in DCD donor organ quality, including oxidative stress, inflammatory responses, cell death pathways, and metabolic disturbances. Additionally, we summarized emerging therapeutic strategies based on findings from omics perspectives, offering new possibilities to improve the quality of DCD organ for better transplant prognosis. Finally, we discussed the challenges in current research and future directions to provide scientific evidence for clinical practice and promote the application of DCD donors in organ transplantation.</p>","PeriodicalId":12622,"journal":{"name":"Frontiers in Immunology","volume":"16 ","pages":"1548735"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11965662/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fimmu.2025.1548735","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Given the inevitable hypoxia and reperfusion injury that occur in organs donated after circulatory death (DCD), the quality and function of these organs are significantly compromised, greatly limiting their application in clinical organ transplantation. Recently, the advancement of functional omics technologies has enabled us to deeply analyze the mechanisms underlying DCD donor organ damage from multiple perspectives. This review systematically integrates the studies from transcriptomics, proteomics, and metabolomics to reveal the key biological mechanisms associated with the declines in DCD donor organ quality, including oxidative stress, inflammatory responses, cell death pathways, and metabolic disturbances. Additionally, we summarized emerging therapeutic strategies based on findings from omics perspectives, offering new possibilities to improve the quality of DCD organ for better transplant prognosis. Finally, we discussed the challenges in current research and future directions to provide scientific evidence for clinical practice and promote the application of DCD donors in organ transplantation.
期刊介绍:
Frontiers in Immunology is a leading journal in its field, publishing rigorously peer-reviewed research across basic, translational and clinical immunology. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
Frontiers in Immunology is the official Journal of the International Union of Immunological Societies (IUIS). Encompassing the entire field of Immunology, this journal welcomes papers that investigate basic mechanisms of immune system development and function, with a particular emphasis given to the description of the clinical and immunological phenotype of human immune disorders, and on the definition of their molecular basis.