Fenja Knoepp, Shariq Abid, Amal Houssaini, Larissa Lipskaia, Mira Yasemin Gökyildirim, Emmanuelle Born, Elisabeth Marcos, Malika Arhatte, Edyta Glogowska, Nora Vienney, Andreas Günther, Simone Kraut, Ingrid Breitenborn-Mueller, Karin Quanz, Dagmar Fenner-Nau, Geneviève Derumeaux, Norbert Weissmann, Eric Honoré, Serge Adnot
{"title":"Piezo1 in PASMCs: Critical for Hypoxia-Induced Pulmonary Hypertension Development.","authors":"Fenja Knoepp, Shariq Abid, Amal Houssaini, Larissa Lipskaia, Mira Yasemin Gökyildirim, Emmanuelle Born, Elisabeth Marcos, Malika Arhatte, Edyta Glogowska, Nora Vienney, Andreas Günther, Simone Kraut, Ingrid Breitenborn-Mueller, Karin Quanz, Dagmar Fenner-Nau, Geneviève Derumeaux, Norbert Weissmann, Eric Honoré, Serge Adnot","doi":"10.1161/CIRCRESAHA.124.325475","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pulmonary hypertension (PH) is a life-threatening and progressive yet incurable disease. The hallmarks of PH comprise (1) sustained contraction and (2) excessive proliferation of pulmonary arterial smooth muscle cells (PASMCs). A major stimulus to which PASMCs are exposed during PH development is altered mechanical stress, originating from increased blood pressure, changes in blood flow velocity, and a progressive stiffening of pulmonary arteries. Mechanosensitive ion channels, including Piezo1, perceive such mechanical stimuli and translate them into a variety of cellular responses, including contractility or proliferation. Thus, the objective of the present study was to elucidate the specific role of Piezo1 in PASMCs for PH development and progression.</p><p><strong>Methods: </strong>The cell-type specific function of Piezo1 in PH was assessed in (1) PASMCs and lung tissues from patients with PH and (2) 2 mouse strains characterized by smooth muscle cell-specific, conditional Piezo1 knockout. Taking advantage of these strains, the smooth muscle cell-specific role of Piezo1 in PH development and progression was assessed in isolated, perfused, and ventilated mouse lungs, wire myography, and proliferation assays. Finally, in vivo function of smooth muscle cell-specific Piezo1 knockout was evaluated upon induction of chronic hypoxia-induced PH in these mice with insights into pulmonary vascular cell senescence.</p><p><strong>Results: </strong>Compared with healthy controls, PASMCs from patients with PH featured an elevated Piezo1 expression and increased proliferative phenotype. Smooth muscle cell-specific Piezo1 deletion, as confirmed via quantitative real-time polymerase chain reaction and patch clamp recordings, prevented the hypoxia-induced increase in PASMC proliferation in mice. Moreover, Piezo1 knockout reduced hypoxic pulmonary vasoconstriction in isolated, perfused, and ventilated mouse lungs, endothelial-denuded pulmonary arteries, and hemodynamic measurements in vivo. Consequently, Piezo1-deficient mice were considerably protected against chronic hypoxia-induced PH development with ameliorated right heart hypertrophy and improved hemodynamic function. In addition, distal pulmonary capillaries were preserved in the Piezo1-knockout mice, associated with a lower number of senescent endothelial cells.</p><p><strong>Conclusions: </strong>This study provides evidence that Piezo1 expressed in PASMCs is critically involved in the pathogenesis of PH by controlling pulmonary vascular tone, arterial remodeling, and associated lung capillary rarefaction due to endothelial cell senescence.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":" ","pages":""},"PeriodicalIF":16.5000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCRESAHA.124.325475","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Pulmonary hypertension (PH) is a life-threatening and progressive yet incurable disease. The hallmarks of PH comprise (1) sustained contraction and (2) excessive proliferation of pulmonary arterial smooth muscle cells (PASMCs). A major stimulus to which PASMCs are exposed during PH development is altered mechanical stress, originating from increased blood pressure, changes in blood flow velocity, and a progressive stiffening of pulmonary arteries. Mechanosensitive ion channels, including Piezo1, perceive such mechanical stimuli and translate them into a variety of cellular responses, including contractility or proliferation. Thus, the objective of the present study was to elucidate the specific role of Piezo1 in PASMCs for PH development and progression.
Methods: The cell-type specific function of Piezo1 in PH was assessed in (1) PASMCs and lung tissues from patients with PH and (2) 2 mouse strains characterized by smooth muscle cell-specific, conditional Piezo1 knockout. Taking advantage of these strains, the smooth muscle cell-specific role of Piezo1 in PH development and progression was assessed in isolated, perfused, and ventilated mouse lungs, wire myography, and proliferation assays. Finally, in vivo function of smooth muscle cell-specific Piezo1 knockout was evaluated upon induction of chronic hypoxia-induced PH in these mice with insights into pulmonary vascular cell senescence.
Results: Compared with healthy controls, PASMCs from patients with PH featured an elevated Piezo1 expression and increased proliferative phenotype. Smooth muscle cell-specific Piezo1 deletion, as confirmed via quantitative real-time polymerase chain reaction and patch clamp recordings, prevented the hypoxia-induced increase in PASMC proliferation in mice. Moreover, Piezo1 knockout reduced hypoxic pulmonary vasoconstriction in isolated, perfused, and ventilated mouse lungs, endothelial-denuded pulmonary arteries, and hemodynamic measurements in vivo. Consequently, Piezo1-deficient mice were considerably protected against chronic hypoxia-induced PH development with ameliorated right heart hypertrophy and improved hemodynamic function. In addition, distal pulmonary capillaries were preserved in the Piezo1-knockout mice, associated with a lower number of senescent endothelial cells.
Conclusions: This study provides evidence that Piezo1 expressed in PASMCs is critically involved in the pathogenesis of PH by controlling pulmonary vascular tone, arterial remodeling, and associated lung capillary rarefaction due to endothelial cell senescence.
期刊介绍:
Circulation Research is a peer-reviewed journal that serves as a forum for the highest quality research in basic cardiovascular biology. The journal publishes studies that utilize state-of-the-art approaches to investigate mechanisms of human disease, as well as translational and clinical research that provide fundamental insights into the basis of disease and the mechanism of therapies.
Circulation Research has a broad audience that includes clinical and academic cardiologists, basic cardiovascular scientists, physiologists, cellular and molecular biologists, and cardiovascular pharmacologists. The journal aims to advance the understanding of cardiovascular biology and disease by disseminating cutting-edge research to these diverse communities.
In terms of indexing, Circulation Research is included in several prominent scientific databases, including BIOSIS, CAB Abstracts, Chemical Abstracts, Current Contents, EMBASE, and MEDLINE. This ensures that the journal's articles are easily discoverable and accessible to researchers in the field.
Overall, Circulation Research is a reputable publication that attracts high-quality research and provides a platform for the dissemination of important findings in basic cardiovascular biology and its translational and clinical applications.