Development and internal validation of an interpretable risk prediction model for diabetic peripheral neuropathy in type 2 diabetes: a single-centre retrospective cohort study in China.

IF 2.4 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL
Lianhua Liu, Bo Bi, Mei Gui, Linli Zhang, Feng Ju, Xiaodan Wang, Li Cao
{"title":"Development and internal validation of an interpretable risk prediction model for diabetic peripheral neuropathy in type 2 diabetes: a single-centre retrospective cohort study in China.","authors":"Lianhua Liu, Bo Bi, Mei Gui, Linli Zhang, Feng Ju, Xiaodan Wang, Li Cao","doi":"10.1136/bmjopen-2024-092463","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Diabetic peripheral neuropathy (DPN) is a common and serious complication of diabetes, which can lead to foot deformity, ulceration, and even amputation. Early identification is crucial, as more than half of DPN patients are asymptomatic in the early stage. This study aimed to develop and validate multiple risk prediction models for DPN in patients with type 2 diabetes mellitus (T2DM) and to apply the Shapley Additive Explanation (SHAP) method to interpret the best-performing model and identify key risk factors for DPN.</p><p><strong>Design: </strong>A single-centre retrospective cohort study.</p><p><strong>Setting: </strong>The study was conducted at a tertiary teaching hospital in Hainan.</p><p><strong>Participants and methods: </strong>Data were retrospectively collected from the electronic medical records of patients with diabetes admitted between 1 January 2021 and 28 March 2023. After data preprocessing, 73 variables were retained for baseline analysis. Feature selection was performed using univariate analysis combined with recursive feature elimination (RFE). The dataset was split into training and test sets in an 8:2 ratio, with the training set balanced via the Synthetic Minority Over-sampling Technique. Six machine learning algorithms were applied to develop prediction models for DPN. Hyperparameters were optimised using grid search with 10-fold cross-validation. Model performance was assessed using various metrics on the test set, and the SHAP method was used to interpret the best-performing model.</p><p><strong>Results: </strong>The study included 3343 T2DM inpatients, with a median age of 60 years (IQR 53-69), and 88.6% (2962/3343) had DPN. The RFE method identified 12 key factors for model construction. Among the six models, XGBoost showed the best predictive performance, achieving an area under the curve of 0.960, accuracy of 0.927, precision of 0.969, recall of 0.948, F1-score of 0.958 and a G-mean of 0.850 on the test set. The SHAP analysis highlighted C reactive protein, total bile acids, gamma-glutamyl transpeptidase, age and lipoprotein(a) as the top five predictors of DPN.</p><p><strong>Conclusions: </strong>The machine learning approach successfully established a DPN risk prediction model with excellent performance. The use of the interpretable SHAP method could enhance the model's clinical applicability.</p>","PeriodicalId":9158,"journal":{"name":"BMJ Open","volume":"15 4","pages":"e092463"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11969608/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMJ Open","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/bmjopen-2024-092463","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Diabetic peripheral neuropathy (DPN) is a common and serious complication of diabetes, which can lead to foot deformity, ulceration, and even amputation. Early identification is crucial, as more than half of DPN patients are asymptomatic in the early stage. This study aimed to develop and validate multiple risk prediction models for DPN in patients with type 2 diabetes mellitus (T2DM) and to apply the Shapley Additive Explanation (SHAP) method to interpret the best-performing model and identify key risk factors for DPN.

Design: A single-centre retrospective cohort study.

Setting: The study was conducted at a tertiary teaching hospital in Hainan.

Participants and methods: Data were retrospectively collected from the electronic medical records of patients with diabetes admitted between 1 January 2021 and 28 March 2023. After data preprocessing, 73 variables were retained for baseline analysis. Feature selection was performed using univariate analysis combined with recursive feature elimination (RFE). The dataset was split into training and test sets in an 8:2 ratio, with the training set balanced via the Synthetic Minority Over-sampling Technique. Six machine learning algorithms were applied to develop prediction models for DPN. Hyperparameters were optimised using grid search with 10-fold cross-validation. Model performance was assessed using various metrics on the test set, and the SHAP method was used to interpret the best-performing model.

Results: The study included 3343 T2DM inpatients, with a median age of 60 years (IQR 53-69), and 88.6% (2962/3343) had DPN. The RFE method identified 12 key factors for model construction. Among the six models, XGBoost showed the best predictive performance, achieving an area under the curve of 0.960, accuracy of 0.927, precision of 0.969, recall of 0.948, F1-score of 0.958 and a G-mean of 0.850 on the test set. The SHAP analysis highlighted C reactive protein, total bile acids, gamma-glutamyl transpeptidase, age and lipoprotein(a) as the top five predictors of DPN.

Conclusions: The machine learning approach successfully established a DPN risk prediction model with excellent performance. The use of the interpretable SHAP method could enhance the model's clinical applicability.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMJ Open
BMJ Open MEDICINE, GENERAL & INTERNAL-
CiteScore
4.40
自引率
3.40%
发文量
4510
审稿时长
2-3 weeks
期刊介绍: BMJ Open is an online, open access journal, dedicated to publishing medical research from all disciplines and therapeutic areas. The journal publishes all research study types, from study protocols to phase I trials to meta-analyses, including small or specialist studies. Publishing procedures are built around fully open peer review and continuous publication, publishing research online as soon as the article is ready.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信