Mitochondrial and microtubule defects in Exfoliation Glaucoma

IF 7.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Arunkumar Venkatesan , Marc Ridilla , Nileyma Castro , J Mario Wolosin , Jessica L. Henty-Ridilla , Barry E. Knox , Preethi S. Ganapathy , Jamin S. Brown , Anthony F. DeVincentis III , Sandra Sieminski , Audrey M. Bernstein
{"title":"Mitochondrial and microtubule defects in Exfoliation Glaucoma","authors":"Arunkumar Venkatesan ,&nbsp;Marc Ridilla ,&nbsp;Nileyma Castro ,&nbsp;J Mario Wolosin ,&nbsp;Jessica L. Henty-Ridilla ,&nbsp;Barry E. Knox ,&nbsp;Preethi S. Ganapathy ,&nbsp;Jamin S. Brown ,&nbsp;Anthony F. DeVincentis III ,&nbsp;Sandra Sieminski ,&nbsp;Audrey M. Bernstein","doi":"10.1016/j.freeradbiomed.2025.03.046","DOIUrl":null,"url":null,"abstract":"<div><div>Exfoliation Syndrome is an age-related systemic condition characterized by large aggregated fibrillar material deposition in the anterior eye tissues. This aggregate formation and deposition on the aqueous humor outflow pathway are significant risk factors for developing Exfoliation Glaucoma (XFG). XFG is a multifactorial late-onset disease that shares common features of neurodegenerative diseases, such as increased protein aggregation, impaired protein degradation, and oxidative and cellular stress. XFG patients display decreased mitochondrial membrane potential and mitochondrial DNA deletions. Here, using Tenon Capsule Fibroblasts (TFs) from patients without glaucoma (No Glaucoma, NG) and XFG patients, we found that XFG TFs have impaired mitochondrial bioenergetics and increased reactive oxygen species accumulation. These defects are associated with mitochondrial abnormalities as XFG TFs exhibit smaller mitochondria that contain dysmorphic cristae, with increased mitochondrial localization to lysosomes and slowed mitophagic flux. Mitochondrial dysfunction in the XFG TFs was associated with hyperdynamic microtubules, decreased acetylated tubulin, and increased HDAC6 activity. Treatment of XFG TFs with a mitophagy inducer, Urolithin A (UA), and a mitochondrial biogenesis inducer, Nicotinamide Ribose (NR), improved mitochondrial bioenergetics and reduced ROS accumulation. Our results demonstrate that XFG TFs have abnormal mitochondria and suggest that mitophagy inducers may represent a potential class of therapeutics for reversing mitochondrial dysfunction in XFG patients.</div></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":"233 ","pages":"Pages 226-239"},"PeriodicalIF":7.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0891584925001960","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Exfoliation Syndrome is an age-related systemic condition characterized by large aggregated fibrillar material deposition in the anterior eye tissues. This aggregate formation and deposition on the aqueous humor outflow pathway are significant risk factors for developing Exfoliation Glaucoma (XFG). XFG is a multifactorial late-onset disease that shares common features of neurodegenerative diseases, such as increased protein aggregation, impaired protein degradation, and oxidative and cellular stress. XFG patients display decreased mitochondrial membrane potential and mitochondrial DNA deletions. Here, using Tenon Capsule Fibroblasts (TFs) from patients without glaucoma (No Glaucoma, NG) and XFG patients, we found that XFG TFs have impaired mitochondrial bioenergetics and increased reactive oxygen species accumulation. These defects are associated with mitochondrial abnormalities as XFG TFs exhibit smaller mitochondria that contain dysmorphic cristae, with increased mitochondrial localization to lysosomes and slowed mitophagic flux. Mitochondrial dysfunction in the XFG TFs was associated with hyperdynamic microtubules, decreased acetylated tubulin, and increased HDAC6 activity. Treatment of XFG TFs with a mitophagy inducer, Urolithin A (UA), and a mitochondrial biogenesis inducer, Nicotinamide Ribose (NR), improved mitochondrial bioenergetics and reduced ROS accumulation. Our results demonstrate that XFG TFs have abnormal mitochondria and suggest that mitophagy inducers may represent a potential class of therapeutics for reversing mitochondrial dysfunction in XFG patients.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Free Radical Biology and Medicine
Free Radical Biology and Medicine 医学-内分泌学与代谢
CiteScore
14.00
自引率
4.10%
发文量
850
审稿时长
22 days
期刊介绍: Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信