Discovery of variation in genes related to agronomic traits by sequencing the genome of Cucurbita pepo varieties.

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
C Pérez-Moro, D D'Esposito, C Capuozzo, A Guadagno, A Pérez-de-Castro, M R Ercolano
{"title":"Discovery of variation in genes related to agronomic traits by sequencing the genome of Cucurbita pepo varieties.","authors":"C Pérez-Moro, D D'Esposito, C Capuozzo, A Guadagno, A Pérez-de-Castro, M R Ercolano","doi":"10.1186/s12864-025-11370-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cucurbita pepo L. cultivars display high morphological traits variation. In addition, C. pepo faces numerous threats, such as viral and fungal infections, which significantly influence crop cultivation. Recent genomic advancements improved the understanding of genetic diversity and stress responses in this crop. We investigated genetic variations related to plant morphology and quality traits. Additionally, the inclusion of both powdery mildew (PM) and Zucchini yellow mosaic virus (ZYMV) susceptible and tolerant varieties facilitated the examination of genetic diversity concerning biotic stress.</p><p><strong>Results: </strong>The sequencing of eight Cucurbita pepo varieties produced an average of 40 million raw reads with a coverage of reference genome ranging from 22 to 40X. More than 4.7 million genomic variants were identified in all genomes. Based on admixture and PCA analysis, the eight C. pepo genotypes were grouped in two clusters belonging to Cocozelle and Zucchini groups, with \"Whitaker\" separated from the rest of the accessions. Genes involved in pathways related to gibberellin regulation, leaf development, and pigment accumulation resulted highly affected by variation suggesting that the diversity observed among varieties in plant and fruit morphology could be related to variants identified in such genes. Each variety showed its own set of genetic differences. The genomic comparison of 381e, 968Rb and SPQ allowed the identification of variants in chromosome regions affecting response to Zucchini yellow mosaic virus (ZYMV) and powdery mildew (PM). Variants in key genes associated with resistant traits were identified, suggesting potential pathways and mechanisms involved in biotic stress response and plant immunity.</p><p><strong>Conclusions: </strong>Genetic variations affecting morphology and fruit quality in C. pepo emphasize their significance for breeding efforts. Furthermore, the genomic comparison of 381e, 968Rb and SPQ highlighted variants in chromosomal regions influencing zucchini's response to PM and ZYMV. These findings could pave the way for more targeted and effective genetic improvement strategies, thereby potentially leading to increased agricultural productivity and quality.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"335"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11969804/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11370-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Cucurbita pepo L. cultivars display high morphological traits variation. In addition, C. pepo faces numerous threats, such as viral and fungal infections, which significantly influence crop cultivation. Recent genomic advancements improved the understanding of genetic diversity and stress responses in this crop. We investigated genetic variations related to plant morphology and quality traits. Additionally, the inclusion of both powdery mildew (PM) and Zucchini yellow mosaic virus (ZYMV) susceptible and tolerant varieties facilitated the examination of genetic diversity concerning biotic stress.

Results: The sequencing of eight Cucurbita pepo varieties produced an average of 40 million raw reads with a coverage of reference genome ranging from 22 to 40X. More than 4.7 million genomic variants were identified in all genomes. Based on admixture and PCA analysis, the eight C. pepo genotypes were grouped in two clusters belonging to Cocozelle and Zucchini groups, with "Whitaker" separated from the rest of the accessions. Genes involved in pathways related to gibberellin regulation, leaf development, and pigment accumulation resulted highly affected by variation suggesting that the diversity observed among varieties in plant and fruit morphology could be related to variants identified in such genes. Each variety showed its own set of genetic differences. The genomic comparison of 381e, 968Rb and SPQ allowed the identification of variants in chromosome regions affecting response to Zucchini yellow mosaic virus (ZYMV) and powdery mildew (PM). Variants in key genes associated with resistant traits were identified, suggesting potential pathways and mechanisms involved in biotic stress response and plant immunity.

Conclusions: Genetic variations affecting morphology and fruit quality in C. pepo emphasize their significance for breeding efforts. Furthermore, the genomic comparison of 381e, 968Rb and SPQ highlighted variants in chromosomal regions influencing zucchini's response to PM and ZYMV. These findings could pave the way for more targeted and effective genetic improvement strategies, thereby potentially leading to increased agricultural productivity and quality.

通过对葫芦科植物品种的基因组测序,发现与农艺性状有关的基因变异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信