Jianfa Ou, Yawen Tang, Alexander Williams, Yikun Huang, Roseanna Shimansky, Gianfranco Salinas, Gregory Keil, Jongchan Lee, Michael C Borys, Anurag Khetan
{"title":"Scalable process development for rAAV transient transfection production using computational fluid dynamics modeling.","authors":"Jianfa Ou, Yawen Tang, Alexander Williams, Yikun Huang, Roseanna Shimansky, Gianfranco Salinas, Gregory Keil, Jongchan Lee, Michael C Borys, Anurag Khetan","doi":"10.1002/btpr.70028","DOIUrl":null,"url":null,"abstract":"<p><p>Recombinant adeno-associated virus (rAAV) is a promising delivery vehicle for cell and gene therapies. Upstream development faces challenges like low productivity and inconsistent performance despite advancements. This study presents a scale-up design for robust rAAV production at 250 L scale using a transfection system. Initial process development in shake flasks optimized plasmid ratio to improve rAAV production. However, genome titer decreased by up to 50% in stirred-tank bioreactors, likely due to mechanical shear forces. Stirred-tank bioreactors were modeled with computational fluid dynamics (CFD) by M-STAR (250 mL, 5 L, 50 L) and with empirical correlations by Dynochem (250 L). Hydrodynamics were characterized to provide normalized shear stress across different geometries. The power per unit volume (P/V) of 71 W/m<sup>3</sup> was optimal for the 250 mL bioreactor, focusing on cell growth, rAAV genome titer, capsid titer, and full capsid ratio. Based on CFD modeling, a P/V of 20 W/m<sup>3</sup> was projected to perform best at 5 and 50 L scales during development, confirmed by comparable genome titer to low shear shake flask culture. A P/V of 15 W/m<sup>3</sup> was subsequently projected for final production at the 250 L scale. The negative impact of shear stress could be further mitigated by adding extra Poloxamer-188 as a shear protectant. Additionally, pre-transfection viable cell density (VCD) was identified as a critical attribute. The final process included a 30% fixed-volume dilution of the cell culture along with controlled DNA complexation conditions to improve process robustness. Sequential production at the 250 L scale demonstrated consistent cell growth and rAAV production.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e70028"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btpr.70028","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recombinant adeno-associated virus (rAAV) is a promising delivery vehicle for cell and gene therapies. Upstream development faces challenges like low productivity and inconsistent performance despite advancements. This study presents a scale-up design for robust rAAV production at 250 L scale using a transfection system. Initial process development in shake flasks optimized plasmid ratio to improve rAAV production. However, genome titer decreased by up to 50% in stirred-tank bioreactors, likely due to mechanical shear forces. Stirred-tank bioreactors were modeled with computational fluid dynamics (CFD) by M-STAR (250 mL, 5 L, 50 L) and with empirical correlations by Dynochem (250 L). Hydrodynamics were characterized to provide normalized shear stress across different geometries. The power per unit volume (P/V) of 71 W/m3 was optimal for the 250 mL bioreactor, focusing on cell growth, rAAV genome titer, capsid titer, and full capsid ratio. Based on CFD modeling, a P/V of 20 W/m3 was projected to perform best at 5 and 50 L scales during development, confirmed by comparable genome titer to low shear shake flask culture. A P/V of 15 W/m3 was subsequently projected for final production at the 250 L scale. The negative impact of shear stress could be further mitigated by adding extra Poloxamer-188 as a shear protectant. Additionally, pre-transfection viable cell density (VCD) was identified as a critical attribute. The final process included a 30% fixed-volume dilution of the cell culture along with controlled DNA complexation conditions to improve process robustness. Sequential production at the 250 L scale demonstrated consistent cell growth and rAAV production.
期刊介绍:
Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries.
Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.