Combining eDNA Metabarcoding, Hydrology-Based Modeling and Camera Trap Datasets to Assess the Potential of River eDNA in Monitoring Terrestrial Mammals

Q1 Agricultural and Biological Sciences
Monika Goralczyk, Arnaud Lyet, Robin Naidoo, Cole Burton, Loïc Pellissier, Luca Carraro
{"title":"Combining eDNA Metabarcoding, Hydrology-Based Modeling and Camera Trap Datasets to Assess the Potential of River eDNA in Monitoring Terrestrial Mammals","authors":"Monika Goralczyk,&nbsp;Arnaud Lyet,&nbsp;Robin Naidoo,&nbsp;Cole Burton,&nbsp;Loïc Pellissier,&nbsp;Luca Carraro","doi":"10.1002/edn3.70089","DOIUrl":null,"url":null,"abstract":"<p>Global efforts aimed at safeguarding and restoring biodiversity require methods to monitor progress towards conservation objectives. Such methods should provide a systematic and robust assessment of biodiversity for the lowest cost. River environmental DNA (eDNA) metabarcoding has been successfully applied to measure biodiversity in dendritic riverine habitats and is increasingly used to describe communities of terrestrial vertebrates in ecosystems that are challenging to survey using traditional methods. However, interpreting eDNA surveys in riverine habitats requires an understanding of the influence of eDNA transport, decay, and production on the distribution of eDNA. To this end, the hydrology-based eDITH (eDNA Integrating Transport and Hydrology) model incorporates such factors and can recover reliable spatial biodiversity patterns for aquatic taxa, but its potential to successfully model terrestrial taxa is so far unexplored. Here, we applied eDITH to eDNA metabarcoding data for terrestrial mammals collected over two mountainous catchments (575 and 745 km<sup>2</sup>) in British Columbia, Canada. We assessed prediction transferability between neighboring catchments and compared model predictions with observations from camera trapping. We found that for 9 out of 15 taxa detected by both eDNA and camera traps, predicted distributions predominantly matched observations from camera trap surveys, illustrating that eDITH can uncover patterns of mammal distribution in mountainous catchments. While lacking knowledge of actual taxon density prevents us from determining whether discrepancies stem from data limitations or complex eDNA production-density relationships, good transferability of predictions to the neighboring catchments suggests that eDNA distribution of some terrestrial and semi-aquatic mammals is partly determined by habitat preference and hydrology. Downstream sampling can recover most biodiversity across the catchment, but the inclusion of upstream samples can aid in detecting elusive species. This study underscores the broader applications of river eDNA beyond aquatic species and illustrates its potential use in addressing terrestrial mammal biodiversity monitoring objectives with tailored sampling approaches.</p>","PeriodicalId":52828,"journal":{"name":"Environmental DNA","volume":"7 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/edn3.70089","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental DNA","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/edn3.70089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Global efforts aimed at safeguarding and restoring biodiversity require methods to monitor progress towards conservation objectives. Such methods should provide a systematic and robust assessment of biodiversity for the lowest cost. River environmental DNA (eDNA) metabarcoding has been successfully applied to measure biodiversity in dendritic riverine habitats and is increasingly used to describe communities of terrestrial vertebrates in ecosystems that are challenging to survey using traditional methods. However, interpreting eDNA surveys in riverine habitats requires an understanding of the influence of eDNA transport, decay, and production on the distribution of eDNA. To this end, the hydrology-based eDITH (eDNA Integrating Transport and Hydrology) model incorporates such factors and can recover reliable spatial biodiversity patterns for aquatic taxa, but its potential to successfully model terrestrial taxa is so far unexplored. Here, we applied eDITH to eDNA metabarcoding data for terrestrial mammals collected over two mountainous catchments (575 and 745 km2) in British Columbia, Canada. We assessed prediction transferability between neighboring catchments and compared model predictions with observations from camera trapping. We found that for 9 out of 15 taxa detected by both eDNA and camera traps, predicted distributions predominantly matched observations from camera trap surveys, illustrating that eDITH can uncover patterns of mammal distribution in mountainous catchments. While lacking knowledge of actual taxon density prevents us from determining whether discrepancies stem from data limitations or complex eDNA production-density relationships, good transferability of predictions to the neighboring catchments suggests that eDNA distribution of some terrestrial and semi-aquatic mammals is partly determined by habitat preference and hydrology. Downstream sampling can recover most biodiversity across the catchment, but the inclusion of upstream samples can aid in detecting elusive species. This study underscores the broader applications of river eDNA beyond aquatic species and illustrates its potential use in addressing terrestrial mammal biodiversity monitoring objectives with tailored sampling approaches.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental DNA
Environmental DNA Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
11.00
自引率
0.00%
发文量
99
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信