Performance of Computer Vision Algorithms for Fine-Grained Classification Using Crowdsourced Insect Images

IF 1.5 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Rita Pucci, Vincent J. Kalkman, Dan Stowell
{"title":"Performance of Computer Vision Algorithms for Fine-Grained Classification Using Crowdsourced Insect Images","authors":"Rita Pucci,&nbsp;Vincent J. Kalkman,&nbsp;Dan Stowell","doi":"10.1049/cvi2.70006","DOIUrl":null,"url":null,"abstract":"<p>With fine-grained classification, we identify unique characteristics to distinguish among classes of the same super-class. We are focusing on species recognition in Insecta as they are critical for biodiversity monitoring and at the base of many ecosystems. With citizen science campaigns, billions of images are collected in the wild. Once these are labelled, experts can use them to create distribution maps. However, the labelling process is time consuming, which is where computer vision comes in. The field of computer vision offers a wide range of algorithms, each with its strengths and weaknesses; how do we identify the algorithm that is in line with our application? To answer this question, we provide a full and detailed evaluation of nine algorithms among deep convolutional networks (CNN), vision transformers (ViT) and locality-based vision transformers (LBVT) on 4 different aspects: classification performance, embedding quality, computational cost and gradient activity. We offer insights that we have not yet had in this domain proving to which extent these algorithms solve the fine-grained tasks in Insecta. We found that ViT performs the best on inference speed and computational cost, whereas LBVT outperforms the others on performance and embedding quality; the CNN provide a trade-off among the metrics.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.70006","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.70006","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

With fine-grained classification, we identify unique characteristics to distinguish among classes of the same super-class. We are focusing on species recognition in Insecta as they are critical for biodiversity monitoring and at the base of many ecosystems. With citizen science campaigns, billions of images are collected in the wild. Once these are labelled, experts can use them to create distribution maps. However, the labelling process is time consuming, which is where computer vision comes in. The field of computer vision offers a wide range of algorithms, each with its strengths and weaknesses; how do we identify the algorithm that is in line with our application? To answer this question, we provide a full and detailed evaluation of nine algorithms among deep convolutional networks (CNN), vision transformers (ViT) and locality-based vision transformers (LBVT) on 4 different aspects: classification performance, embedding quality, computational cost and gradient activity. We offer insights that we have not yet had in this domain proving to which extent these algorithms solve the fine-grained tasks in Insecta. We found that ViT performs the best on inference speed and computational cost, whereas LBVT outperforms the others on performance and embedding quality; the CNN provide a trade-off among the metrics.

Abstract Image

利用众包昆虫图像进行细粒度分类的计算机视觉算法的性能
通过细粒度分类,我们可以识别独特的特征来区分相同超类的不同类。我们将重点放在昆虫科的物种识别上,因为它们对生物多样性监测至关重要,也是许多生态系统的基础。随着公民科学运动的开展,数十亿张野外照片被收集起来。一旦这些标签被标记,专家就可以用它们来创建分布图。然而,标签过程是耗时的,这就是计算机视觉的用武之地。计算机视觉领域提供了各种各样的算法,每种算法都有其优缺点;我们如何识别符合我们应用程序的算法?为了回答这个问题,我们从分类性能、嵌入质量、计算成本和梯度活动四个不同方面对深度卷积网络(CNN)、视觉变压器(ViT)和基于位置的视觉变压器(LBVT)中的九种算法进行了全面而详细的评估。我们提供了我们在这个领域还没有的见解,证明了这些算法在多大程度上解决了昆虫中的细粒度任务。我们发现ViT在推理速度和计算成本上表现最好,而LBVT在性能和嵌入质量上优于其他方法;CNN提供了指标之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Computer Vision
IET Computer Vision 工程技术-工程:电子与电气
CiteScore
3.30
自引率
11.80%
发文量
76
审稿时长
3.4 months
期刊介绍: IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision. IET Computer Vision welcomes submissions on the following topics: Biologically and perceptually motivated approaches to low level vision (feature detection, etc.); Perceptual grouping and organisation Representation, analysis and matching of 2D and 3D shape Shape-from-X Object recognition Image understanding Learning with visual inputs Motion analysis and object tracking Multiview scene analysis Cognitive approaches in low, mid and high level vision Control in visual systems Colour, reflectance and light Statistical and probabilistic models Face and gesture Surveillance Biometrics and security Robotics Vehicle guidance Automatic model aquisition Medical image analysis and understanding Aerial scene analysis and remote sensing Deep learning models in computer vision Both methodological and applications orientated papers are welcome. Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review. Special Issues Current Call for Papers: Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信