{"title":"FinerSense: A Fine-Grained Respiration Sensing System Based on Precise Separation of Wi-Fi Signals","authors":"Wenchao Song;Zhu Wang;Yifan Guo;Zhuo Sun;Zhihui Ren;Chao Chen;Bin Guo;Zhiwen Yu;Xingshe Zhou;Daqing Zhang","doi":"10.1109/TMC.2024.3514311","DOIUrl":null,"url":null,"abstract":"This study introduces a novel approach for preventing overexertion in home fitness through fine-grained detection of respiratory parameters. To overcome the robustness limitation associated with using a composite signal for wireless sensing, we introduce an optimization-based signal separation model. This model effectively disentangles composite signals into static and dynamic components, while preserving the intricate details of target movements or activities. Specifically, by constructing a reference signal derived from the dominant static component, we eliminate time-varying phase shifts and leverage the invariant property of the dynamic component’s amplitude for precise separation. A system called <italic>FinerSense</i> is developed, which is able to accurately and robustly detect fine-grained respiratory parameters such as respiration rate, depth, and inhalation-to-exhalation ratio with accuracy rates exceeding 97%, 95%, and 91%, respectively. Extensive experiments show that the developed system outperforms state-of-the-art baselines significantly, empowering users to optimize exercise intensity and duration while mitigating the risk of overexertion. We believe that this work is able to facilitate the seamless transition of wireless sensing systems from laboratory prototypes to practical and user-friendly applications.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 5","pages":"3703-3718"},"PeriodicalIF":7.7000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10787125/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces a novel approach for preventing overexertion in home fitness through fine-grained detection of respiratory parameters. To overcome the robustness limitation associated with using a composite signal for wireless sensing, we introduce an optimization-based signal separation model. This model effectively disentangles composite signals into static and dynamic components, while preserving the intricate details of target movements or activities. Specifically, by constructing a reference signal derived from the dominant static component, we eliminate time-varying phase shifts and leverage the invariant property of the dynamic component’s amplitude for precise separation. A system called FinerSense is developed, which is able to accurately and robustly detect fine-grained respiratory parameters such as respiration rate, depth, and inhalation-to-exhalation ratio with accuracy rates exceeding 97%, 95%, and 91%, respectively. Extensive experiments show that the developed system outperforms state-of-the-art baselines significantly, empowering users to optimize exercise intensity and duration while mitigating the risk of overexertion. We believe that this work is able to facilitate the seamless transition of wireless sensing systems from laboratory prototypes to practical and user-friendly applications.
期刊介绍:
IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.