Yuxiao Song;Daojing He;Minghui Dai;Sammy Chan;Kim-Kwang Raymond Choo;Mohsen Guizani
{"title":"Blockchain Assisted Trust Management for Data-Parallel Distributed Learning","authors":"Yuxiao Song;Daojing He;Minghui Dai;Sammy Chan;Kim-Kwang Raymond Choo;Mohsen Guizani","doi":"10.1109/TMC.2024.3521443","DOIUrl":null,"url":null,"abstract":"Machine learning models can support decision-making in mobile terminals (MTs) deployments, but their training generally requires massive datasets and abundant computation resources. This is challenging in practice due to the resource constraints of many MTs. To address this issue, data-parallel distributed learning can be conducted by offloading computation tasks from MTs to the edge-layer nodes. To facilitate the establishment of trust, one can leverage trust management, say to use trust values derived from local model quality and evaluations by other nodes as access criteria. Nonetheless, security and performance considerations remain unsolved. In this paper, we propose a blockchain-assisted dynamic trust management scheme for distributed learning, which comprises nodes attributes registration, trust calculation, information saving, and block writing. The proof of stake (PoS) consensus mechanism is leveraged to enable efficient consensus among the nodes using trust values as stakes. The incentive mechanism and corresponding dynamic optimization are then proposed to further improve system performance and security. The reinforcement-learning approach is leveraged to provide the optimal strategy for nodes’ local iterations and selection. Simulations and security analysis demonstrate that our proposed scheme can achieve an optimal trade-off between efficiency and quality of distributed learning while maintaining system security.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 5","pages":"3826-3843"},"PeriodicalIF":7.7000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10812900/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning models can support decision-making in mobile terminals (MTs) deployments, but their training generally requires massive datasets and abundant computation resources. This is challenging in practice due to the resource constraints of many MTs. To address this issue, data-parallel distributed learning can be conducted by offloading computation tasks from MTs to the edge-layer nodes. To facilitate the establishment of trust, one can leverage trust management, say to use trust values derived from local model quality and evaluations by other nodes as access criteria. Nonetheless, security and performance considerations remain unsolved. In this paper, we propose a blockchain-assisted dynamic trust management scheme for distributed learning, which comprises nodes attributes registration, trust calculation, information saving, and block writing. The proof of stake (PoS) consensus mechanism is leveraged to enable efficient consensus among the nodes using trust values as stakes. The incentive mechanism and corresponding dynamic optimization are then proposed to further improve system performance and security. The reinforcement-learning approach is leveraged to provide the optimal strategy for nodes’ local iterations and selection. Simulations and security analysis demonstrate that our proposed scheme can achieve an optimal trade-off between efficiency and quality of distributed learning while maintaining system security.
期刊介绍:
IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.